强化学习
计算机科学
理论(学习稳定性)
数学优化
群体行为
避障
障碍物
收缩(语法)
人工智能
机器学习
数学
机器人
医学
内科学
政治学
法学
移动机器人
作者
Qizhen Wu,Gaoxiang Liu,Kexin Liu,Lei Chen
出处
期刊:2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)
日期:2023-06-02
卷期号:: 62-67
标识
DOI:10.1109/iccss58421.2023.10270800
摘要
The bird-oid object (Boids) model proposes a control algorithm to make the positions between agents achieve cooperative stability. By changing the parameters of cohesion and repulsion in the algorithm, the agents in the swarm can be made to converge to different positions, causing expansion and contraction of the formation. But it is often more difficult to select the appropriate parameters to form the ideal formation. Therefore, this paper proposes a method to improve the cohesive and repulsive parameters in the Boids model based on Q-learning network to achieve a simulation scenario with continuous obstacle avoidance and maximum coverage of space.
科研通智能强力驱动
Strongly Powered by AbleSci AI