Research on an Underwater Object Detection Network Based on Dual-Branch Feature Extraction

计算机科学 水下 人工智能 特征提取 目标检测 骨干网 模式识别(心理学) 特征(语言学) 计算机视觉 分割 电信 语言学 海洋学 哲学 地质学
作者
Xiao Chen,Mujiahui Yuan,Chenye Fan,Xingwu Chen,Yaan Li,Haiyan Wang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (16): 3413-3413 被引量:6
标识
DOI:10.3390/electronics12163413
摘要

Underwater object detection is challenging in computer vision research due to the complex underwater environment, poor image quality, and varying target scales, making it difficult for existing object detection networks to achieve high accuracy in underwater tasks. To address the issues of limited data and multi-scale targets in underwater detection, we propose a Dual-Branch Underwater Object Detection Network (DB-UODN) based on dual-branch feature extraction. In the feature extraction stage, we design a dual-branch structure by combining the You Only Look Once (YOLO) v7 backbone with the Enhanced Channel and Dilated Block (ECDB). It allows for the extraction and complementation of multi-scale features, which enable the model to learn both global and local information and enhance its perception of multi-scale features in underwater targets. Furthermore, we employ the DSPACSPC structure to replace the SPPCSPC structure in YOLOv7. The DSPACSPC structure utilizes atrous convolutions with different dilation rates to capture contextual information at various scales, compensating for potential information loss caused by pooling operations. Additionally, we utilize a dense connection structure to facilitate feature reuse and enhance the network’s representation and generalization capabilities. Experimental results demonstrate that the proposed DB-UODN outperforms the most commonly used object detection networks in underwater scenarios. On the URPC2020 dataset, the network achieves an average detection accuracy of 87.36%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琦琦国王完成签到,获得积分10
刚刚
刚刚
stinkyfish完成签到,获得积分20
刚刚
怡然的代玉完成签到,获得积分10
1秒前
zhangjianqing发布了新的文献求助10
1秒前
lhr发布了新的文献求助10
1秒前
1秒前
zoey发布了新的文献求助10
1秒前
四夕完成签到 ,获得积分10
1秒前
2秒前
2秒前
淡定雁开完成签到,获得积分10
2秒前
SZK关闭了SZK文献求助
2秒前
2秒前
健壮的凝冬完成签到 ,获得积分10
3秒前
去有风的地方完成签到,获得积分10
3秒前
水杯完成签到,获得积分10
4秒前
4秒前
4秒前
罗伯特骚塞完成签到,获得积分10
5秒前
听话的靖柏完成签到 ,获得积分0
5秒前
美好雨竹完成签到 ,获得积分10
5秒前
Lucas应助聂立双采纳,获得10
5秒前
Damocles完成签到,获得积分10
6秒前
6秒前
7秒前
company发布了新的文献求助10
7秒前
moon完成签到,获得积分10
7秒前
博修完成签到,获得积分10
7秒前
弥生完成签到,获得积分10
7秒前
敏敏完成签到 ,获得积分10
8秒前
yuanquaner发布了新的文献求助10
8秒前
tcx完成签到 ,获得积分10
9秒前
张小兔啊完成签到,获得积分10
9秒前
小许会更好完成签到,获得积分10
10秒前
10秒前
CodeCraft应助cherish_7宝采纳,获得10
11秒前
11秒前
星迹一帆完成签到 ,获得积分10
12秒前
lhr发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904