Modality translation-based multimodal sentiment analysis under uncertain missing modalities

模式 计算机科学 编码器 模态(人机交互) 人工智能 变压器 机器翻译 情绪分析 缺少数据 水准点(测量) 自然语言处理 语音识别 机器学习 社会科学 物理 大地测量学 量子力学 电压 社会学 地理 操作系统
作者
Zhizhong Liu,Bin Zhou,Dianhui Chu,Yuhang Sun,Lingqiang Meng
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101973-101973 被引量:17
标识
DOI:10.1016/j.inffus.2023.101973
摘要

Multimodal sentiment analysis (MSA) with uncertain missing modalities poses a new challenge in sentiment analysis. To address this problem, efficient MSA models that consider missing modalities have been proposed. However, existing studies have only adopted the concatenation operation for feature fusion while ignoring the deep interactions between different modalities. Moreover, existing studies have failed to take advantage of the text modality, which can achieve better accuracy in sentiment analysis. To tackle the above-mentioned issues, we propose a modality translation-based MSA model (MTMSA), which is robust to uncertain missing modalities. First, for multimodal data (text, visual, and audio) with uncertain missing data, the visual and audio are translated to the text modality with a modality translation module, and then the translated visual modality, translated audio, and encoded text are fused into missing joint features (MJFs). Next, the MJFs are encoded by the transformer encoder module under the supervision of a pre-trained model (transformer-based modality translation network, TMTN), thus making the transformer encoder module produce joint features of uncertain missing modalities approximating those of complete modalities. The encoded MJFs are input into the transformer decoder module to learn the long-term dependencies between different modalities. Finally, sentiment classification is performed based on the outputs of the transformer encoder module. Extensive experiments were conducted on two popular benchmark datasets (CMU-MOSI and IEMOCAP), with the experimental results demonstrating that MTMSA outperforms eight representative baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助独特的高山采纳,获得10
刚刚
1秒前
chu发布了新的文献求助10
2秒前
JZJ发布了新的文献求助10
2秒前
3秒前
时光完成签到,获得积分10
4秒前
5秒前
乐乐完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
7秒前
萌萌完成签到,获得积分10
8秒前
2028847955发布了新的文献求助10
9秒前
9秒前
9秒前
江江发布了新的文献求助10
11秒前
11秒前
qin123发布了新的文献求助10
12秒前
yxb完成签到,获得积分20
12秒前
砂浆黏你完成签到,获得积分10
13秒前
沐浴清风发布了新的文献求助10
14秒前
思源应助ashore采纳,获得10
15秒前
vvvvvv发布了新的文献求助30
15秒前
华仔应助走走走采纳,获得10
16秒前
讴歌完成签到,获得积分10
16秒前
锅包肉发布了新的文献求助30
16秒前
zzzzz完成签到,获得积分10
18秒前
Yt发布了新的文献求助10
18秒前
梓泽丘墟应助精灵夜雨采纳,获得20
19秒前
啦啦啦发布了新的文献求助10
20秒前
文丽发布了新的文献求助10
20秒前
在水一方应助qin123采纳,获得10
22秒前
打打应助沐浴清风采纳,获得10
25秒前
25秒前
Singularity应助爆炸米花采纳,获得20
25秒前
田様应助泡椒采纳,获得10
27秒前
大个应助zzzhw采纳,获得10
29秒前
Akim应助2028847955采纳,获得10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153496
求助须知:如何正确求助?哪些是违规求助? 2804706
关于积分的说明 7861097
捐赠科研通 2462651
什么是DOI,文献DOI怎么找? 1310893
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809