Modality translation-based multimodal sentiment analysis under uncertain missing modalities

模式 计算机科学 编码器 模态(人机交互) 人工智能 变压器 机器翻译 情绪分析 缺少数据 水准点(测量) 自然语言处理 语音识别 机器学习 社会科学 物理 大地测量学 量子力学 电压 社会学 地理 操作系统
作者
Zhizhong Liu,Bin Zhou,Dianhui Chu,Yuhang Sun,Lingqiang Meng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101973-101973 被引量:44
标识
DOI:10.1016/j.inffus.2023.101973
摘要

Multimodal sentiment analysis (MSA) with uncertain missing modalities poses a new challenge in sentiment analysis. To address this problem, efficient MSA models that consider missing modalities have been proposed. However, existing studies have only adopted the concatenation operation for feature fusion while ignoring the deep interactions between different modalities. Moreover, existing studies have failed to take advantage of the text modality, which can achieve better accuracy in sentiment analysis. To tackle the above-mentioned issues, we propose a modality translation-based MSA model (MTMSA), which is robust to uncertain missing modalities. First, for multimodal data (text, visual, and audio) with uncertain missing data, the visual and audio are translated to the text modality with a modality translation module, and then the translated visual modality, translated audio, and encoded text are fused into missing joint features (MJFs). Next, the MJFs are encoded by the transformer encoder module under the supervision of a pre-trained model (transformer-based modality translation network, TMTN), thus making the transformer encoder module produce joint features of uncertain missing modalities approximating those of complete modalities. The encoded MJFs are input into the transformer decoder module to learn the long-term dependencies between different modalities. Finally, sentiment classification is performed based on the outputs of the transformer encoder module. Extensive experiments were conducted on two popular benchmark datasets (CMU-MOSI and IEMOCAP), with the experimental results demonstrating that MTMSA outperforms eight representative baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助美丽的冷荷采纳,获得10
1秒前
wanci应助翔翼风采纳,获得10
1秒前
biye关注了科研通微信公众号
2秒前
彭祖宇关注了科研通微信公众号
2秒前
2秒前
小麦发布了新的文献求助10
2秒前
2秒前
2秒前
999完成签到,获得积分10
3秒前
脑洞疼应助xiaobei采纳,获得10
3秒前
4秒前
小蘑菇应助帅气的如豹采纳,获得10
4秒前
4秒前
4秒前
冰怡霖完成签到,获得积分10
5秒前
科研人完成签到,获得积分20
5秒前
5秒前
cat发布了新的文献求助10
5秒前
999发布了新的文献求助10
6秒前
sye发布了新的文献求助10
7秒前
Lucas应助dyp采纳,获得10
7秒前
7秒前
serendipity发布了新的文献求助10
7秒前
7秒前
kgs336699发布了新的文献求助30
8秒前
nsc发布了新的文献求助10
8秒前
taowang14完成签到,获得积分10
8秒前
9秒前
orixero应助张斯宁采纳,获得10
9秒前
9秒前
SciGPT应助Yvonne采纳,获得10
9秒前
cbxzhsun发布了新的文献求助40
10秒前
FashionBoy应助不吃香菜采纳,获得10
10秒前
11秒前
11秒前
执着的怜寒应助LTJ采纳,获得10
11秒前
12秒前
寂寞的威完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558