A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation

计算机科学 推荐系统 图形 领域(数学分析) 理论计算机科学 代表(政治) 人工智能 利用 机器学习 情报检索 数学分析 数学 计算机安全 政治 政治学 法学
作者
Zitao Xu,Weike Pan,Zhong Ming
标识
DOI:10.1145/3604915.3608785
摘要

Sequential recommendation methods play an irreplaceable role in recommender systems which can capture the users' dynamic preferences from the behavior sequences. Despite their success, these works usually suffer from the sparsity problem commonly existed in real applications. Cross-domain sequential recommendation aims to alleviate this problem by introducing relatively richer source-domain data. However, most existing methods capture the users' preferences independently of each domain, which may neglect the item transition patterns across sequences from different domains, i.e., a user's interaction in one domain may influence his/her next interaction in other domains. Moreover, the data sparsity problem still exists since some items in the target and source domains are interacted with only a limited number of times. To address these issues, in this paper we propose a generic framework named multi-view graph contrastive learning (MGCL). Specifically, we adopt the contrastive mechanism in an intra-domain item representation view and an inter-domain user preference view. The former is to jointly learn the dynamic sequential information in the user sequence graph and the static collaborative information in the cross-domain global graph, while the latter is to capture the complementary information of the user's preferences from different domains. Extensive empirical studies on three real-world datasets demonstrate that our MGCL significantly outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lin完成签到,获得积分10
2秒前
2秒前
斯文败类应助乐观鑫鹏采纳,获得10
4秒前
浮游应助LHP采纳,获得10
5秒前
Lulul发布了新的文献求助10
6秒前
bai完成签到,获得积分10
6秒前
十一玮发布了新的文献求助10
7秒前
xdmhv完成签到,获得积分10
11秒前
12秒前
Akim应助Tian采纳,获得10
14秒前
水水的完成签到 ,获得积分10
16秒前
球球尧伞耳完成签到,获得积分10
19秒前
John完成签到,获得积分10
20秒前
22秒前
酷波er应助纯真猕猴桃采纳,获得10
22秒前
23秒前
didi发布了新的文献求助10
23秒前
万能图书馆应助qianqina采纳,获得30
23秒前
暮烟应助Lulul采纳,获得10
23秒前
虚幻的冬瓜完成签到 ,获得积分10
26秒前
小翼发布了新的文献求助10
28秒前
30秒前
33秒前
glay发布了新的文献求助10
37秒前
想睡觉的小笼包完成签到 ,获得积分10
37秒前
称心映寒完成签到 ,获得积分10
39秒前
isak完成签到 ,获得积分10
39秒前
rachel03发布了新的文献求助20
42秒前
某某完成签到 ,获得积分10
42秒前
45秒前
48秒前
巩佳铭发布了新的文献求助10
49秒前
隐形曼青应助科研通管家采纳,获得10
49秒前
李爱国应助科研通管家采纳,获得10
49秒前
田様应助科研通管家采纳,获得10
50秒前
李健应助十一玮采纳,获得10
50秒前
Hello应助科研通管家采纳,获得10
50秒前
六月疏雨应助科研通管家采纳,获得10
50秒前
Owen应助科研通管家采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969