亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced Gating Effects in Responsive Sub-nanofluidic Ion Channels

门控 离子 离子通道 电压 电压门控离子通道 化学 纳米技术 材料科学 生物物理学 电气工程 工程类 生物化学 受体 有机化学 生物
作者
Chen Zhao,Jue Hou,Matthew R. Hill,Benny D. Freeman,Huanting Wang,Huacheng Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 786-797 被引量:14
标识
DOI:10.1021/accountsmr.3c00067
摘要

ConspectusThe smart regulation of ion flow in biological ion channels (BICs) is vital to life. In general, intelligent BICs possess three main functions: (i) to selectively transfer specific ions, (ii) to quickly conduct specific ions, and (iii) to responsively control the flow of ions. Since the early exploration of potassium (K+) and sodium (Na+) channels began in the 1950s, the gating behaviors of BICs have been investigated for more than 70 years. Taking the first reported voltage-gated ion transport process as an example, a gate, which acts as the voltage sensor in BICs, detects variation in the membrane voltage, triggering the opening and closing of the ion channels. A gating ratio (GR) can describe the gating effect of a BIC, GR = IOpen/IClosed, where IOpen and IClosed are measured ion currents of the channel at open and closed states, respectively. BICs usually have strong gating effects with an extraordinarily high gating ratio, which can be up to infinity for channels with zero-current closed states. Inspired by nature, artificial ion channels (AICs) have been constructed to control ion permeation intelligently. Since 2004, a wide range of AICs have been developed to regulate the flow of ions via external stimulation (i.e., light, voltage, pH, magnetic field, and temperature). These ion nanochannels, usually constructed with intrinsic or guest functionalities that are responsive to environmental simulation, drive the opening and closing of the channels. However, the gating performances of such nanoscale ion channels (i.e., gating ratios usually between 1 and 30) are far below those of BICs, due to the relatively larger nanopores in AICs, which cannot entirely block ion transport in the off states. Over the past decade, emerging advanced materials (i.e., 1D nanotubes, 2D nanosheets, and 1D-3D sub-nanoporous frameworks) with intrinsic sub-nanometer pores and stimuli-responsive properties have provided promising tools to fabricate responsive sub-nanofluidic channels with efficient gating performance. These AICs are remarkably comparable to their biological counterparts, because their more confined spaces enable a more effective closed state of the channels. Our team has developed a series of responsive sub-nanofluidic channels based on metal–organic frameworks, covalent organic frameworks, and 2D nanosheets. These sub-nanofluidic channels exhibit much higher on–off gating ratios than nanofluidic channels do, and the gating effects can be maintained over a wide range of ionic concentrations. Moreover, sub-nanofluidic channels also show stimuli-tunable ion selectivity and ion blockage effects. Therefore, this Account first summarizes recent progress in fabrication and functionalization methods for constructing artificial responsive sub-nanoscale ion channels and then compare the gating principles of sub-nanochannels and nanochannels, before discussing the unique gating effects of sub-nanofluidic channels (i.e., large ion blockage effect, high gating ratio, stimuli-tunable ion selectivity, and wide gating applicable ionic concentration range). Next, the applications of sub-nanofluidic channels/membranes for sensing ions, energy harvesting, ion adsorption, and ion separation are presented. Finally, we offer a perspective on the future development of artificial responsive sub-nanofluidic channels that further improve gating performance and have applications in real-world devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张可完成签到 ,获得积分10
4秒前
6秒前
carrieschen完成签到,获得积分10
8秒前
文静三颜完成签到,获得积分10
14秒前
余凌兰完成签到 ,获得积分10
28秒前
28秒前
31秒前
LZY发布了新的文献求助10
32秒前
VuuVuu发布了新的文献求助10
35秒前
共享精神应助时尚的秋白采纳,获得10
36秒前
42秒前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ZHI发布了新的文献求助10
1分钟前
1分钟前
sjadsqf完成签到 ,获得积分10
1分钟前
zho发布了新的文献求助10
1分钟前
格林发布了新的文献求助10
1分钟前
研友_VZG7GZ应助ZHI采纳,获得10
2分钟前
信封完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
难过的踏歌完成签到,获得积分10
3分钟前
3分钟前
jiang伟完成签到,获得积分20
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
3分钟前
两个轮完成签到 ,获得积分10
3分钟前
Augustines完成签到,获得积分10
3分钟前
DoubleW完成签到 ,获得积分10
3分钟前
一定能成功!完成签到,获得积分10
3分钟前
sunran0完成签到 ,获得积分10
3分钟前
情怀应助carrieschen采纳,获得10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803