Enhanced Gating Effects in Responsive Sub-nanofluidic Ion Channels

门控 离子 离子通道 电压 电压门控离子通道 化学 纳米技术 材料科学 生物物理学 电气工程 工程类 生物化学 受体 有机化学 生物
作者
Chen Zhao,Jue Hou,Matthew R. Hill,Benny D. Freeman,Huanting Wang,Huacheng Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 786-797 被引量:14
标识
DOI:10.1021/accountsmr.3c00067
摘要

ConspectusThe smart regulation of ion flow in biological ion channels (BICs) is vital to life. In general, intelligent BICs possess three main functions: (i) to selectively transfer specific ions, (ii) to quickly conduct specific ions, and (iii) to responsively control the flow of ions. Since the early exploration of potassium (K+) and sodium (Na+) channels began in the 1950s, the gating behaviors of BICs have been investigated for more than 70 years. Taking the first reported voltage-gated ion transport process as an example, a gate, which acts as the voltage sensor in BICs, detects variation in the membrane voltage, triggering the opening and closing of the ion channels. A gating ratio (GR) can describe the gating effect of a BIC, GR = IOpen/IClosed, where IOpen and IClosed are measured ion currents of the channel at open and closed states, respectively. BICs usually have strong gating effects with an extraordinarily high gating ratio, which can be up to infinity for channels with zero-current closed states. Inspired by nature, artificial ion channels (AICs) have been constructed to control ion permeation intelligently. Since 2004, a wide range of AICs have been developed to regulate the flow of ions via external stimulation (i.e., light, voltage, pH, magnetic field, and temperature). These ion nanochannels, usually constructed with intrinsic or guest functionalities that are responsive to environmental simulation, drive the opening and closing of the channels. However, the gating performances of such nanoscale ion channels (i.e., gating ratios usually between 1 and 30) are far below those of BICs, due to the relatively larger nanopores in AICs, which cannot entirely block ion transport in the off states. Over the past decade, emerging advanced materials (i.e., 1D nanotubes, 2D nanosheets, and 1D-3D sub-nanoporous frameworks) with intrinsic sub-nanometer pores and stimuli-responsive properties have provided promising tools to fabricate responsive sub-nanofluidic channels with efficient gating performance. These AICs are remarkably comparable to their biological counterparts, because their more confined spaces enable a more effective closed state of the channels. Our team has developed a series of responsive sub-nanofluidic channels based on metal–organic frameworks, covalent organic frameworks, and 2D nanosheets. These sub-nanofluidic channels exhibit much higher on–off gating ratios than nanofluidic channels do, and the gating effects can be maintained over a wide range of ionic concentrations. Moreover, sub-nanofluidic channels also show stimuli-tunable ion selectivity and ion blockage effects. Therefore, this Account first summarizes recent progress in fabrication and functionalization methods for constructing artificial responsive sub-nanoscale ion channels and then compare the gating principles of sub-nanochannels and nanochannels, before discussing the unique gating effects of sub-nanofluidic channels (i.e., large ion blockage effect, high gating ratio, stimuli-tunable ion selectivity, and wide gating applicable ionic concentration range). Next, the applications of sub-nanofluidic channels/membranes for sensing ions, energy harvesting, ion adsorption, and ion separation are presented. Finally, we offer a perspective on the future development of artificial responsive sub-nanofluidic channels that further improve gating performance and have applications in real-world devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助高兴的风华采纳,获得10
刚刚
刚刚
刚刚
Natasha发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
汉堡包应助马子妍采纳,获得10
2秒前
2秒前
nulinuli发布了新的文献求助10
3秒前
3秒前
yitian完成签到 ,获得积分10
3秒前
3秒前
无花果应助随便采纳,获得10
4秒前
赘婿应助随便采纳,获得10
4秒前
飞翔的葡萄籽完成签到,获得积分10
4秒前
完美世界应助emoji采纳,获得30
4秒前
Jasper应助Eden采纳,获得10
4秒前
ding应助刘月茹采纳,获得10
4秒前
上官若男应助wei采纳,获得10
5秒前
5秒前
华仔应助杜文倩采纳,获得10
5秒前
myth发布了新的文献求助10
5秒前
爆米花应助嘎哈采纳,获得10
5秒前
WFF完成签到,获得积分10
6秒前
Sega完成签到,获得积分10
6秒前
tly发布了新的文献求助10
6秒前
张舒慧发布了新的文献求助10
6秒前
nszws完成签到,获得积分10
7秒前
在水一方应助千筹采纳,获得10
7秒前
付一彤完成签到,获得积分10
7秒前
7秒前
顺利白竹发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
救驾来迟发布了新的文献求助10
9秒前
9秒前
ljq发布了新的文献求助10
9秒前
李爱国应助何必在乎采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994