scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data

聚类分析 计算机科学 杠杆(统计) 数据挖掘 组学 鉴定(生物学) 机器学习 人工智能 生物信息学 生物 植物
作者
Youlin Zhan,Jiahan Liu,Le Ou-Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6121-6132 被引量:3
标识
DOI:10.1109/jbhi.2023.3317272
摘要

Cell type identification is a crucial step towards the study of cellular heterogeneity and biological processes. Advances in single-cell sequencing technology have enabled the development of a variety of clustering methods for cell type identification. However, most of existing methods are designed for clustering single omic data such as single-cell RNA-sequencing (scRNA-seq) data. The accumulation of single-cell multi-omics data provides a great opportunity to integrate different omics data for cell clustering, but also raise new computational challenges for existing methods. How to integrate multi-omics data and leverage their consensus and complementary information to improve the accuracy of cell clustering still remains a challenge. In this study, we propose a new deep multi-level information fusion framework, named scMIC, for clustering single-cell multi-omics data. Our model can integrate the attribute information of cells and the potential structural relationship among cells from local and global levels, and reduce redundant information between different omics from cell and feature levels, leading to more discriminative representations. Moreover, the proposed multiple collaborative supervised clustering strategy is able to guide the learning process of the core encoding part by learning the high-confidence target distribution, which facilitates the interaction between the clustering part and the representation learning part, as well as the information exchange between omics, and finally obtain more robust clustering results. Experiments on seven single-cell multi-omics datasets show the superiority of scMIC over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窦慕卉发布了新的文献求助10
刚刚
刚刚
有终完成签到 ,获得积分10
2秒前
2秒前
Roy发布了新的文献求助10
2秒前
2秒前
4秒前
陈军应助Li采纳,获得20
4秒前
小书虫发布了新的文献求助10
4秒前
郑石发布了新的文献求助10
5秒前
zzz发布了新的文献求助50
7秒前
9秒前
9秒前
Lucas应助窦慕卉采纳,获得10
9秒前
Stronger发布了新的文献求助10
10秒前
10秒前
顾矜应助张zhang采纳,获得10
10秒前
11秒前
11秒前
sube完成签到,获得积分10
12秒前
wangjiaooooo发布了新的文献求助10
12秒前
12秒前
王嘉巍发布了新的文献求助10
13秒前
XD824完成签到,获得积分10
13秒前
大模型应助Roy采纳,获得10
15秒前
XD824发布了新的文献求助10
16秒前
丘比特应助糊涂的小刺猬采纳,获得10
16秒前
ding应助缓慢珠采纳,获得10
17秒前
zumii发布了新的文献求助10
18秒前
18秒前
小胖完成签到,获得积分20
18秒前
19秒前
ABS发布了新的文献求助10
19秒前
科研通AI2S应助clueless采纳,获得10
20秒前
lrl发布了新的文献求助10
22秒前
顾矜应助怕孤独的火龙果采纳,获得10
22秒前
王sir发布了新的文献求助10
23秒前
23秒前
24秒前
大方马里奥完成签到,获得积分10
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170102
求助须知:如何正确求助?哪些是违规求助? 2821407
关于积分的说明 7933784
捐赠科研通 2481608
什么是DOI,文献DOI怎么找? 1321916
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579