scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data

聚类分析 计算机科学 杠杆(统计) 数据挖掘 组学 鉴定(生物学) 机器学习 人工智能 生物信息学 生物 植物
作者
Youlin Zhan,Jiahan Liu,Le Ou-Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6121-6132 被引量:6
标识
DOI:10.1109/jbhi.2023.3317272
摘要

Cell type identification is a crucial step towards the study of cellular heterogeneity and biological processes. Advances in single-cell sequencing technology have enabled the development of a variety of clustering methods for cell type identification. However, most of existing methods are designed for clustering single omic data such as single-cell RNA-sequencing (scRNA-seq) data. The accumulation of single-cell multi-omics data provides a great opportunity to integrate different omics data for cell clustering, but also raise new computational challenges for existing methods. How to integrate multi-omics data and leverage their consensus and complementary information to improve the accuracy of cell clustering still remains a challenge. In this study, we propose a new deep multi-level information fusion framework, named scMIC, for clustering single-cell multi-omics data. Our model can integrate the attribute information of cells and the potential structural relationship among cells from local and global levels, and reduce redundant information between different omics from cell and feature levels, leading to more discriminative representations. Moreover, the proposed multiple collaborative supervised clustering strategy is able to guide the learning process of the core encoding part by learning the high-confidence target distribution, which facilitates the interaction between the clustering part and the representation learning part, as well as the information exchange between omics, and finally obtain more robust clustering results. Experiments on seven single-cell multi-omics datasets show the superiority of scMIC over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助冷傲机器猫采纳,获得10
刚刚
1秒前
1秒前
2秒前
maox1aoxin应助hugeyoung采纳,获得30
2秒前
2秒前
灰灰号完成签到,获得积分20
3秒前
乐观大叔完成签到,获得积分10
3秒前
刘青松发布了新的文献求助10
4秒前
4秒前
黄浩文发布了新的文献求助10
5秒前
Lucas应助zsh采纳,获得10
5秒前
灰灰号发布了新的文献求助10
6秒前
布丁完成签到,获得积分10
6秒前
荔枝啵啵完成签到 ,获得积分10
7秒前
Orange应助Endeavor采纳,获得10
7秒前
含蓄冬瓜完成签到,获得积分10
7秒前
谭玲慧发布了新的文献求助10
7秒前
CR7应助谭耀采纳,获得20
8秒前
小蘑菇应助Derik采纳,获得10
8秒前
lvang完成签到,获得积分10
8秒前
8秒前
小二郎应助寒冷的咖啡采纳,获得10
9秒前
打打应助活泼灵枫采纳,获得10
10秒前
10秒前
小新同学发布了新的文献求助10
10秒前
11秒前
smy完成签到,获得积分10
12秒前
wanci应助玄音采纳,获得10
12秒前
汉堡包应助科研喵采纳,获得10
13秒前
13秒前
13秒前
风趣的鸡翅完成签到,获得积分10
13秒前
14秒前
严珍珍完成签到 ,获得积分10
14秒前
怡然铃铛发布了新的文献求助10
14秒前
田様应助堀江真夏采纳,获得10
14秒前
冷酷的听兰完成签到,获得积分20
15秒前
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987