scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data

聚类分析 计算机科学 杠杆(统计) 数据挖掘 组学 鉴定(生物学) 机器学习 人工智能 生物信息学 生物 植物
作者
Youlin Zhan,Jiahan Liu,Le Ou-Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6121-6132 被引量:5
标识
DOI:10.1109/jbhi.2023.3317272
摘要

Cell type identification is a crucial step towards the study of cellular heterogeneity and biological processes. Advances in single-cell sequencing technology have enabled the development of a variety of clustering methods for cell type identification. However, most of existing methods are designed for clustering single omic data such as single-cell RNA-sequencing (scRNA-seq) data. The accumulation of single-cell multi-omics data provides a great opportunity to integrate different omics data for cell clustering, but also raise new computational challenges for existing methods. How to integrate multi-omics data and leverage their consensus and complementary information to improve the accuracy of cell clustering still remains a challenge. In this study, we propose a new deep multi-level information fusion framework, named scMIC, for clustering single-cell multi-omics data. Our model can integrate the attribute information of cells and the potential structural relationship among cells from local and global levels, and reduce redundant information between different omics from cell and feature levels, leading to more discriminative representations. Moreover, the proposed multiple collaborative supervised clustering strategy is able to guide the learning process of the core encoding part by learning the high-confidence target distribution, which facilitates the interaction between the clustering part and the representation learning part, as well as the information exchange between omics, and finally obtain more robust clustering results. Experiments on seven single-cell multi-omics datasets show the superiority of scMIC over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐慕源发布了新的文献求助10
刚刚
wenwen完成签到,获得积分10
刚刚
XZZH完成签到,获得积分10
1秒前
清浅发布了新的文献求助10
1秒前
车到山前必有路女士完成签到,获得积分10
1秒前
JamesPei应助Ripples采纳,获得10
1秒前
1秒前
我是老大应助乐园采纳,获得10
2秒前
3秒前
个木发布了新的文献求助10
3秒前
谨慎不二发布了新的文献求助10
3秒前
CodeCraft应助lishunzcqty采纳,获得10
4秒前
青丝落花完成签到,获得积分10
4秒前
化学小学生完成签到,获得积分10
4秒前
5秒前
完美世界应助高高迎蓉采纳,获得10
5秒前
已拿捏催化剂完成签到 ,获得积分10
5秒前
WJM发布了新的文献求助10
5秒前
左丘忻完成签到,获得积分10
5秒前
6秒前
端庄的萝发布了新的文献求助20
6秒前
孟严青完成签到,获得积分10
6秒前
livra1058完成签到,获得积分10
6秒前
wonderting完成签到,获得积分10
6秒前
无敌小汐完成签到,获得积分10
7秒前
7秒前
圈圈发布了新的文献求助10
7秒前
EW完成签到,获得积分10
7秒前
8秒前
金鸡奖完成签到,获得积分10
8秒前
研友_LNB7rL完成签到,获得积分10
8秒前
11发布了新的文献求助10
9秒前
经法发布了新的文献求助10
9秒前
bjbbh完成签到,获得积分10
10秒前
Skyrin发布了新的文献求助10
10秒前
10秒前
阿蒙完成签到,获得积分10
11秒前
传奇3应助个木采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678