已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multiscale Hybrid Attention Networks Based on Multiview Images for the Diagnosis of Parkinson’s Disease

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 召回 帕金森病 特征提取 矢状面 疾病 病理 医学 心理学 放射科 认知心理学
作者
Xinchun Cui,Youshi Zhou,Chao Zhao,Jianlong Li,Xiangwei Zheng,X. Li,S. Shan,Jin‐Xing Liu,Xiaoli Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2023.3315407
摘要

Parkinson’s disease (PD) is one of the common neurodegenerative diseases of the elderly. However, the modern healthcare lacks the apparatus to detect the early signs of the disease, with only selected experts being able to spot the onset. Therefore, the early detection of PD is particularly important. Convolutional neural networks, a deep learning technique that can automatically extract image features, have been widely used in the diagnosis of medical images. Due to the complexity of the organization in the brain, we proposed a multi-scale hybrid attention network (MSHANet) for automatic detection of healthy and Parkinson’s disease patients. MSHANet consisted of designed multi-scale convolutional blocks and introduced hybrid attention blocks, so it can capture complex features in brain images. Two datasets were created using the images in the publicly available Parkinson’s Progression Markers Initiative (PPMI) dataset, where the SV_3Dataset consisted of axial slices located in the substantia nigra region, and the MV_3Dataset adds mid-sagittal slices and striatal slices on the basis of SV_3Dataset. For these two datasets, we proposed two different classification strategies, namely Parallel Network Classification (PNC) and Multi-Slice Fusion Classification (MSFC), to improve the classification performance of PD. After cross-validation experiments, the best results for the model using the PNC strategy achieved are 90.59% of accuracy, 90.59% of precision, 90.61% of recall, 90.6% of F1 score, and 0.956 of AUC. By analyzing the above results, the striatal slice in MV_3Dataset provides higher accuracy than the other two slices. Both PNC and MSFC improved the classification effect of MSHANet on PD and HC, and the effect of PNC was better. The PNC strategy is used to test the performance of MSHANet on the test set. The best result is that the accuracy rate is 94.11%, the accuracy rate is 94.18%, the recall rate is 94.16, the F1 value is 94.17%, and the AUC is 0.9585. Our proposed method can help clinicians in accurately diagnosing the PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助LR采纳,获得10
刚刚
克泷完成签到 ,获得积分10
1秒前
浩whu完成签到,获得积分10
1秒前
2秒前
wanci应助baill采纳,获得10
4秒前
田様应助南余采纳,获得10
4秒前
清爽鼠标完成签到 ,获得积分10
4秒前
5秒前
6秒前
小袁完成签到 ,获得积分10
6秒前
随机波动应助dlfg采纳,获得20
6秒前
南国之霄发布了新的文献求助10
7秒前
8秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
GingerF应助科研通管家采纳,获得50
10秒前
10秒前
12秒前
13秒前
13秒前
李健的粉丝团团长应助cin采纳,获得10
16秒前
冷静的访天完成签到 ,获得积分10
16秒前
雪飞杨完成签到 ,获得积分10
16秒前
Dr发布了新的文献求助10
16秒前
baill发布了新的文献求助10
18秒前
18秒前
我是中国人完成签到,获得积分10
19秒前
随机波动应助ppdzhu采纳,获得50
20秒前
阿丕啊呸完成签到,获得积分10
20秒前
12彡完成签到,获得积分10
20秒前
Aura完成签到,获得积分10
20秒前
现代访云发布了新的文献求助10
22秒前
bc发布了新的文献求助80
24秒前
NOTHING完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090300
求助须知:如何正确求助?哪些是违规求助? 4304991
关于积分的说明 13415058
捐赠科研通 4130561
什么是DOI,文献DOI怎么找? 2262480
邀请新用户注册赠送积分活动 1266327
关于科研通互助平台的介绍 1201063