A Multiscale Hybrid Attention Networks Based on Multiview Images for the Diagnosis of Parkinson’s Disease

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 召回 帕金森病 特征提取 矢状面 疾病 病理 医学 心理学 放射科 认知心理学
作者
Xinchun Cui,Youshi Zhou,Chao Zhao,Jianlong Li,Xiangwei Zheng,X. Li,S. Shan,Jin‐Xing Liu,Xiaoli Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2023.3315407
摘要

Parkinson’s disease (PD) is one of the common neurodegenerative diseases of the elderly. However, the modern healthcare lacks the apparatus to detect the early signs of the disease, with only selected experts being able to spot the onset. Therefore, the early detection of PD is particularly important. Convolutional neural networks, a deep learning technique that can automatically extract image features, have been widely used in the diagnosis of medical images. Due to the complexity of the organization in the brain, we proposed a multi-scale hybrid attention network (MSHANet) for automatic detection of healthy and Parkinson’s disease patients. MSHANet consisted of designed multi-scale convolutional blocks and introduced hybrid attention blocks, so it can capture complex features in brain images. Two datasets were created using the images in the publicly available Parkinson’s Progression Markers Initiative (PPMI) dataset, where the SV_3Dataset consisted of axial slices located in the substantia nigra region, and the MV_3Dataset adds mid-sagittal slices and striatal slices on the basis of SV_3Dataset. For these two datasets, we proposed two different classification strategies, namely Parallel Network Classification (PNC) and Multi-Slice Fusion Classification (MSFC), to improve the classification performance of PD. After cross-validation experiments, the best results for the model using the PNC strategy achieved are 90.59% of accuracy, 90.59% of precision, 90.61% of recall, 90.6% of F1 score, and 0.956 of AUC. By analyzing the above results, the striatal slice in MV_3Dataset provides higher accuracy than the other two slices. Both PNC and MSFC improved the classification effect of MSHANet on PD and HC, and the effect of PNC was better. The PNC strategy is used to test the performance of MSHANet on the test set. The best result is that the accuracy rate is 94.11%, the accuracy rate is 94.18%, the recall rate is 94.16, the F1 value is 94.17%, and the AUC is 0.9585. Our proposed method can help clinicians in accurately diagnosing the PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
Rondab应助科研通管家采纳,获得30
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
LF应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
ll应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
猪猪hero应助奋斗的剑采纳,获得10
1秒前
李英豪应助科研通管家采纳,获得10
1秒前
ll应助科研通管家采纳,获得10
2秒前
Dream发布了新的文献求助10
2秒前
2秒前
小二郎应助xzf1996采纳,获得10
3秒前
郑小七发布了新的文献求助10
4秒前
Lucas应助Lartyrs采纳,获得10
4秒前
华仔应助zxh采纳,获得10
6秒前
可靠豆芽完成签到,获得积分10
6秒前
Owen应助了一采纳,获得30
7秒前
7秒前
bkagyin应助da1234采纳,获得10
8秒前
失眠的霸完成签到,获得积分10
9秒前
BK_发布了新的文献求助10
11秒前
开心的山兰完成签到,获得积分20
12秒前
qq给qq的求助进行了留言
12秒前
batman1999发布了新的文献求助30
12秒前
14秒前
丘比特应助旋转的龙采纳,获得10
15秒前
Lucas应助a123采纳,获得10
16秒前
Owen应助Manzhen采纳,获得10
18秒前
可爱deyi发布了新的文献求助10
18秒前
ywayw完成签到,获得积分10
18秒前
传奇3应助木木采纳,获得10
19秒前
量子星尘发布了新的文献求助10
21秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163