A Multiscale Hybrid Attention Networks Based on Multiview Images for the Diagnosis of Parkinson’s Disease

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 召回 帕金森病 特征提取 矢状面 疾病 病理 医学 心理学 放射科 认知心理学
作者
Xinchun Cui,Youshi Zhou,Chao Zhao,Jianlong Li,Xiangwei Zheng,X. Li,S. Shan,Jin‐Xing Liu,Xiaoli Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2023.3315407
摘要

Parkinson’s disease (PD) is one of the common neurodegenerative diseases of the elderly. However, the modern healthcare lacks the apparatus to detect the early signs of the disease, with only selected experts being able to spot the onset. Therefore, the early detection of PD is particularly important. Convolutional neural networks, a deep learning technique that can automatically extract image features, have been widely used in the diagnosis of medical images. Due to the complexity of the organization in the brain, we proposed a multi-scale hybrid attention network (MSHANet) for automatic detection of healthy and Parkinson’s disease patients. MSHANet consisted of designed multi-scale convolutional blocks and introduced hybrid attention blocks, so it can capture complex features in brain images. Two datasets were created using the images in the publicly available Parkinson’s Progression Markers Initiative (PPMI) dataset, where the SV_3Dataset consisted of axial slices located in the substantia nigra region, and the MV_3Dataset adds mid-sagittal slices and striatal slices on the basis of SV_3Dataset. For these two datasets, we proposed two different classification strategies, namely Parallel Network Classification (PNC) and Multi-Slice Fusion Classification (MSFC), to improve the classification performance of PD. After cross-validation experiments, the best results for the model using the PNC strategy achieved are 90.59% of accuracy, 90.59% of precision, 90.61% of recall, 90.6% of F1 score, and 0.956 of AUC. By analyzing the above results, the striatal slice in MV_3Dataset provides higher accuracy than the other two slices. Both PNC and MSFC improved the classification effect of MSHANet on PD and HC, and the effect of PNC was better. The PNC strategy is used to test the performance of MSHANet on the test set. The best result is that the accuracy rate is 94.11%, the accuracy rate is 94.18%, the recall rate is 94.16, the F1 value is 94.17%, and the AUC is 0.9585. Our proposed method can help clinicians in accurately diagnosing the PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上短靴完成签到,获得积分10
刚刚
矿泉水完成签到 ,获得积分10
刚刚
1秒前
寻绿发布了新的文献求助10
1秒前
发一篇sci完成签到 ,获得积分10
3秒前
3秒前
搜集达人应助张曼婷采纳,获得10
4秒前
独特的初彤完成签到 ,获得积分10
4秒前
WHB发布了新的文献求助10
5秒前
5秒前
敏家发布了新的文献求助10
6秒前
2799发布了新的文献求助10
6秒前
我是老大应助220103采纳,获得10
7秒前
8秒前
Alex发布了新的文献求助10
8秒前
yht完成签到,获得积分10
8秒前
韩兆宇完成签到 ,获得积分10
8秒前
Chen1n发布了新的文献求助10
11秒前
lx完成签到,获得积分20
11秒前
活泼烤鸡完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI5应助白术采纳,获得10
13秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得30
14秒前
orixero应助科研通管家采纳,获得10
14秒前
小青椒应助科研通管家采纳,获得30
14秒前
Owen应助科研通管家采纳,获得10
15秒前
小明应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
科研通AI5应助舒适的流沙采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
安善涛发布了新的文献求助10
18秒前
19秒前
骤雨时晴完成签到 ,获得积分10
20秒前
研友_nvkJrZ发布了新的文献求助10
20秒前
缥缈芷珍发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
室外可见光通信与智能交通 500
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4876749
求助须知:如何正确求助?哪些是违规求助? 4164972
关于积分的说明 12920382
捐赠科研通 3922623
什么是DOI,文献DOI怎么找? 2153422
邀请新用户注册赠送积分活动 1171604
关于科研通互助平台的介绍 1075374