A Multiscale Hybrid Attention Networks Based on Multiview Images for the Diagnosis of Parkinson’s Disease

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 召回 帕金森病 特征提取 矢状面 疾病 病理 医学 心理学 放射科 认知心理学
作者
Xinchun Cui,Youshi Zhou,Chao Zhao,Jianlong Li,Xiangwei Zheng,X. Li,S. Shan,Jin‐Xing Liu,Xiaoli Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2023.3315407
摘要

Parkinson’s disease (PD) is one of the common neurodegenerative diseases of the elderly. However, the modern healthcare lacks the apparatus to detect the early signs of the disease, with only selected experts being able to spot the onset. Therefore, the early detection of PD is particularly important. Convolutional neural networks, a deep learning technique that can automatically extract image features, have been widely used in the diagnosis of medical images. Due to the complexity of the organization in the brain, we proposed a multi-scale hybrid attention network (MSHANet) for automatic detection of healthy and Parkinson’s disease patients. MSHANet consisted of designed multi-scale convolutional blocks and introduced hybrid attention blocks, so it can capture complex features in brain images. Two datasets were created using the images in the publicly available Parkinson’s Progression Markers Initiative (PPMI) dataset, where the SV_3Dataset consisted of axial slices located in the substantia nigra region, and the MV_3Dataset adds mid-sagittal slices and striatal slices on the basis of SV_3Dataset. For these two datasets, we proposed two different classification strategies, namely Parallel Network Classification (PNC) and Multi-Slice Fusion Classification (MSFC), to improve the classification performance of PD. After cross-validation experiments, the best results for the model using the PNC strategy achieved are 90.59% of accuracy, 90.59% of precision, 90.61% of recall, 90.6% of F1 score, and 0.956 of AUC. By analyzing the above results, the striatal slice in MV_3Dataset provides higher accuracy than the other two slices. Both PNC and MSFC improved the classification effect of MSHANet on PD and HC, and the effect of PNC was better. The PNC strategy is used to test the performance of MSHANet on the test set. The best result is that the accuracy rate is 94.11%, the accuracy rate is 94.18%, the recall rate is 94.16, the F1 value is 94.17%, and the AUC is 0.9585. Our proposed method can help clinicians in accurately diagnosing the PD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dollar完成签到,获得积分10
刚刚
瑶瑶乐发布了新的文献求助10
刚刚
2秒前
wn完成签到,获得积分10
3秒前
小白果果完成签到,获得积分10
3秒前
zho发布了新的文献求助10
3秒前
HanMing发布了新的文献求助10
4秒前
阿珊发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
chyu1057完成签到 ,获得积分10
6秒前
Leo完成签到,获得积分10
6秒前
7秒前
Owen应助开朗的从灵采纳,获得10
8秒前
飞飞发布了新的文献求助10
8秒前
852应助ylsn采纳,获得10
8秒前
无敌最俊朗应助若水采纳,获得20
8秒前
9秒前
TingWan发布了新的文献求助10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
嘉心糖应助科研通管家采纳,获得20
9秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
斯文富完成签到 ,获得积分10
10秒前
大个应助科研通管家采纳,获得20
10秒前
淡淡的姝应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
彭于彦祖应助科研通管家采纳,获得100
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
感动归尘发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312864
求助须知:如何正确求助?哪些是违规求助? 2945309
关于积分的说明 8524240
捐赠科研通 2621078
什么是DOI,文献DOI怎么找? 1433284
科研通“疑难数据库(出版商)”最低求助积分说明 664932
邀请新用户注册赠送积分活动 650302