Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging

列线图 无线电技术 医学 磁共振成像 接收机工作特性 放射科 核医学 肿瘤科 内科学
作者
Tao Han,Xianwang Liu,Changyou Long,Zhendong Xu,Yayuan Geng,Bin Zhang,Liangna Deng,Mengyuan Jing,Jing Zhou
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 16-22 被引量:2
标识
DOI:10.1016/j.mri.2023.09.002
摘要

To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
锣大炮完成签到,获得积分10
1秒前
maqin完成签到,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助lwei采纳,获得10
1秒前
幽默的念双完成签到,获得积分10
1秒前
正直冰露发布了新的文献求助10
2秒前
标致小伙发布了新的文献求助10
2秒前
2秒前
pinkdon完成签到,获得积分10
2秒前
5477完成签到,获得积分10
2秒前
3秒前
lins完成签到,获得积分20
3秒前
Orange应助cindy采纳,获得10
4秒前
4秒前
phz完成签到,获得积分10
4秒前
5秒前
所所应助积极的凌波采纳,获得10
5秒前
SV关注了科研通微信公众号
5秒前
白蕲完成签到,获得积分10
6秒前
调研昵称发布了新的文献求助20
6秒前
柔弱凡松发布了新的文献求助10
7秒前
yyds完成签到,获得积分10
8秒前
认真子默完成签到,获得积分10
8秒前
8秒前
8秒前
mylian完成签到,获得积分10
8秒前
10秒前
10秒前
SY发布了新的文献求助10
10秒前
可爱小哪吒完成签到,获得积分10
10秒前
斯文败类应助doudou采纳,获得10
11秒前
苹果完成签到,获得积分10
11秒前
11秒前
一颗咸蛋黄完成签到 ,获得积分20
13秒前
打打应助5477采纳,获得10
13秒前
灵巧坤发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762