Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging

列线图 无线电技术 医学 磁共振成像 接收机工作特性 放射科 核医学 肿瘤科 内科学
作者
Tao Han,Xianwang Liu,Changyou Long,Zhendong Xu,Yayuan Geng,Bin Zhang,Liangna Deng,Mengyuan Jing,Jing Zhou
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 16-22 被引量:2
标识
DOI:10.1016/j.mri.2023.09.002
摘要

To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
123发布了新的文献求助10
6秒前
生椰拿铁完成签到,获得积分10
8秒前
会飞的小猪完成签到,获得积分0
9秒前
诗懿发布了新的文献求助10
9秒前
曲奇吐司完成签到,获得积分10
12秒前
14秒前
大个应助贪玩语蓉采纳,获得10
19秒前
20秒前
王线性发布了新的文献求助10
25秒前
卷大喵完成签到,获得积分10
26秒前
希望天下0贩的0应助相因采纳,获得10
27秒前
科研通AI2S应助魏猛采纳,获得10
29秒前
张丹111完成签到,获得积分10
29秒前
30秒前
orange9发布了新的文献求助20
34秒前
昵称发布了新的文献求助10
37秒前
烂漫蚂蚁完成签到,获得积分10
38秒前
39秒前
40秒前
41秒前
棋1完成签到 ,获得积分10
42秒前
星辰大海应助Kikisman采纳,获得10
43秒前
陶醉的钢笔完成签到 ,获得积分10
44秒前
流露发布了新的文献求助10
44秒前
VERITAS完成签到,获得积分10
44秒前
魏猛发布了新的文献求助10
48秒前
奋斗小公主完成签到,获得积分10
49秒前
123完成签到,获得积分10
50秒前
相识完成签到,获得积分10
52秒前
Owen应助昵称采纳,获得10
54秒前
务实小鸽子完成签到 ,获得积分10
54秒前
56秒前
jhope完成签到 ,获得积分10
56秒前
56秒前
cycy发布了新的文献求助10
58秒前
未来余主任完成签到 ,获得积分10
1分钟前
王淑惠发布了新的文献求助10
1分钟前
Kikisman发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352352
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680125
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455859
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666