Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging

列线图 无线电技术 医学 磁共振成像 接收机工作特性 放射科 核医学 肿瘤科 内科学
作者
Tao Han,Xianwang Liu,Changyou Long,Zhendong Xu,Yayuan Geng,Bin Zhang,Liangna Deng,Mengyuan Jing,Junlin Zhou
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:104: 16-22 被引量:9
标识
DOI:10.1016/j.mri.2023.09.002
摘要

To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林野发布了新的文献求助10
1秒前
怕黑的凌柏完成签到,获得积分10
1秒前
虚影发布了新的文献求助10
1秒前
1秒前
2秒前
CROWN完成签到,获得积分10
2秒前
2秒前
田様应助piers采纳,获得10
2秒前
2秒前
隐形曼青应助我爱科研采纳,获得30
2秒前
bbb完成签到,获得积分10
3秒前
lcjynwe完成签到,获得积分10
3秒前
3秒前
小二郎应助愉快的楷瑞采纳,获得10
4秒前
科研通AI6应助小绵羊采纳,获得10
4秒前
4秒前
4秒前
Ava应助868采纳,获得10
4秒前
一叶舟完成签到 ,获得积分10
5秒前
xiaozhou完成签到,获得积分10
5秒前
5秒前
受伤的依霜完成签到,获得积分20
5秒前
小王同学完成签到,获得积分10
5秒前
5秒前
lyreruin完成签到,获得积分10
5秒前
虚影完成签到,获得积分10
6秒前
林祥胜完成签到,获得积分10
6秒前
敏感代云完成签到,获得积分10
6秒前
6秒前
科研通AI5应助bbb采纳,获得10
6秒前
6秒前
瑾风阳完成签到,获得积分10
7秒前
琪哒发布了新的文献求助10
7秒前
225455完成签到,获得积分10
7秒前
7秒前
沉默发布了新的文献求助10
7秒前
爆米花应助英勇的面包采纳,获得10
7秒前
7秒前
Hover发布了新的文献求助10
7秒前
烟花应助jyyg采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426