已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging

列线图 无线电技术 医学 磁共振成像 接收机工作特性 放射科 核医学 肿瘤科 内科学
作者
Tao Han,Xianwang Liu,Changyou Long,Zhendong Xu,Yayuan Geng,Bin Zhang,Liangna Deng,Mengyuan Jing,Junlin Zhou
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 16-22 被引量:9
标识
DOI:10.1016/j.mri.2023.09.002
摘要

To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来学习完成签到,获得积分10
2秒前
3秒前
慕青应助kk采纳,获得10
5秒前
CYL07完成签到 ,获得积分10
7秒前
科研通AI6应助U87采纳,获得30
10秒前
短巷完成签到 ,获得积分10
15秒前
牛哥发布了新的文献求助10
17秒前
18秒前
21秒前
猜不猜不完成签到 ,获得积分10
21秒前
菜芽君完成签到,获得积分10
21秒前
杜飞发布了新的文献求助10
21秒前
文静的可仁完成签到,获得积分10
22秒前
fff完成签到 ,获得积分10
22秒前
我吃小饼干完成签到 ,获得积分10
24秒前
26秒前
grace完成签到 ,获得积分10
26秒前
zcm1999完成签到,获得积分10
26秒前
hauru完成签到,获得积分10
30秒前
李爱国应助香菜包采纳,获得10
30秒前
momo完成签到,获得积分10
36秒前
THEO完成签到,获得积分10
36秒前
Unlisted完成签到,获得积分10
38秒前
Cope完成签到 ,获得积分10
39秒前
39秒前
小白完成签到,获得积分10
40秒前
魔幻以菱完成签到 ,获得积分10
41秒前
xxx发布了新的文献求助10
44秒前
蛙蛙应助U87采纳,获得30
44秒前
加菲丰丰完成签到,获得积分0
45秒前
曾予嘉完成签到 ,获得积分10
48秒前
揽月完成签到,获得积分10
51秒前
小袁冲冲冲完成签到,获得积分10
52秒前
小二郎应助陶醉紫菜采纳,获得10
52秒前
gura完成签到 ,获得积分10
53秒前
21完成签到 ,获得积分10
54秒前
54秒前
桐桐应助曾予嘉采纳,获得10
55秒前
xiaohan,JIA完成签到,获得积分10
58秒前
充电宝应助杜飞采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655