Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging

列线图 无线电技术 医学 磁共振成像 接收机工作特性 放射科 核医学 肿瘤科 内科学
作者
Tao Han,Xianwang Liu,Changyou Long,Zhendong Xu,Yayuan Geng,Bin Zhang,Liangna Deng,Mengyuan Jing,Junlin Zhou
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 16-22 被引量:9
标识
DOI:10.1016/j.mri.2023.09.002
摘要

To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
Silole发布了新的文献求助10
4秒前
打打应助蓝蓝蓝蓝蓝蓝采纳,获得10
4秒前
科目三应助一辛采纳,获得10
4秒前
JY_Gan应助little2000采纳,获得20
5秒前
天天快乐应助qdd采纳,获得10
7秒前
心流完成签到,获得积分10
7秒前
8秒前
dongyi发布了新的文献求助10
9秒前
胡萝卜发布了新的文献求助10
9秒前
11秒前
1111111发布了新的文献求助10
11秒前
洋洋完成签到,获得积分10
14秒前
聪明机器猫完成签到,获得积分10
14秒前
正直的夜天完成签到,获得积分20
15秒前
16秒前
霍格沃兹魔药课助理完成签到,获得积分10
17秒前
领导范儿应助体贴的鼠标采纳,获得10
18秒前
18秒前
汉堡包应助胡萝卜采纳,获得10
19秒前
1223完成签到,获得积分10
19秒前
Akim应助277采纳,获得10
19秒前
20秒前
21秒前
TANG完成签到,获得积分10
21秒前
Silole发布了新的文献求助10
22秒前
香蕉以菱发布了新的文献求助10
23秒前
yy发布了新的文献求助10
24秒前
碟子发布了新的文献求助10
24秒前
诸葛带你做分析_yorfir完成签到,获得积分0
25秒前
勤奋橘子完成签到,获得积分10
26秒前
天天快乐应助拼搏新筠采纳,获得10
26秒前
26秒前
笑笑完成签到,获得积分10
29秒前
情怀应助yy采纳,获得10
30秒前
30秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933