GNN-based deep reinforcement learning for MBD product model recommendation

重新使用 计算机科学 人工智能 强化学习 语义学(计算机科学) 产品(数学) 图形 机器学习 分类 理论计算机科学 工程类 数学 几何学 程序设计语言 废物管理
作者
Y. Hu,Zewen Sheng,Min Ye,Meiyu Zhang,Chengfeng Jian
出处
期刊:International Journal of Computer Integrated Manufacturing [Informa]
卷期号:37 (1-2): 183-197 被引量:4
标识
DOI:10.1080/0951192x.2023.2258090
摘要

ABSTRACTDigital twin is more and more widely used, and the delivery demand of digital twin is more and more prominent at the same time of product physical delivery. Research on the digital twin product model recommendation method is of great significance for the rapid construction and reuse of digital twins. The methods currently in use, however, principally concentrate on geometric reuse and pay little attention to functional or knowledge reuse. In this paper, a graph neural network (GNN)-based deep reinforcement learning (DRL) for product model recommendation is presented. First, an MBD (model-based definition)-based semantic feature attribute adjacency graph (MSFAAG) is introduced to structured MBD model as the carrier of the digital twin product model. The MSFAAG is then embedded into continuous vector spaces using a GNN to obtain the categorization of these MBD models. Finally, DRL is used to adaptively identify more important semantic features, including manufacturing semantics and functional semantics, to obtain more detailed model classification results. The experiment effectively improves the reuse efficiency of the non-geometric aspects of the digital twin product and MBD model. Compared with other traditional recommendation algorithms, the algorithm proposed in this paper has higher accuracy and can well meet the design requirements of users.KEYWORDS: Model based definitiongraph neural networksdeep reinforcement learningreuse, recommendation AcknowledgementsThis work was supported in part by the National Natural Science Foundation of China under Grant No.61672461 and No.62073293.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61672461].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迎南完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
梁寒完成签到,获得积分10
4秒前
科研通AI6应助君莫笑采纳,获得10
4秒前
旺仔小高发布了新的文献求助10
4秒前
幸福白安发布了新的文献求助10
4秒前
4秒前
科研狗发布了新的文献求助10
4秒前
桃李发布了新的文献求助10
4秒前
4秒前
Executor完成签到,获得积分10
4秒前
5秒前
5秒前
天真的半莲完成签到,获得积分20
6秒前
可能可能最可能不像不像不太像完成签到,获得积分10
7秒前
chenjun7080完成签到,获得积分10
7秒前
爱学习的公主完成签到,获得积分10
7秒前
曈梦完成签到,获得积分10
8秒前
烟花应助zouxiang采纳,获得10
8秒前
李爱国应助孤独星月采纳,获得10
9秒前
科研通AI6应助腌椰菜采纳,获得10
9秒前
Jason完成签到,获得积分10
10秒前
不靠谱发布了新的文献求助10
10秒前
漂泊完成签到,获得积分10
11秒前
12秒前
12秒前
alpv完成签到,获得积分10
12秒前
Zhao发布了新的文献求助30
12秒前
追风少年完成签到 ,获得积分10
13秒前
13秒前
乐乐应助水水采纳,获得10
14秒前
14秒前
科研通AI6应助yeliya99采纳,获得10
14秒前
FFF发布了新的文献求助20
15秒前
lucky发布了新的文献求助10
15秒前
15秒前
追魂墨迹发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600913
求助须知:如何正确求助?哪些是违规求助? 4686477
关于积分的说明 14844184
捐赠科研通 4678943
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252