GNN-based deep reinforcement learning for MBD product model recommendation

重新使用 计算机科学 人工智能 强化学习 语义学(计算机科学) 产品(数学) 图形 机器学习 分类 理论计算机科学 工程类 数学 几何学 程序设计语言 废物管理
作者
Y. Hu,Zewen Sheng,Min Ye,Meiyu Zhang,Chengfeng Jian
出处
期刊:International Journal of Computer Integrated Manufacturing [Informa]
卷期号:37 (1-2): 183-197 被引量:4
标识
DOI:10.1080/0951192x.2023.2258090
摘要

ABSTRACTDigital twin is more and more widely used, and the delivery demand of digital twin is more and more prominent at the same time of product physical delivery. Research on the digital twin product model recommendation method is of great significance for the rapid construction and reuse of digital twins. The methods currently in use, however, principally concentrate on geometric reuse and pay little attention to functional or knowledge reuse. In this paper, a graph neural network (GNN)-based deep reinforcement learning (DRL) for product model recommendation is presented. First, an MBD (model-based definition)-based semantic feature attribute adjacency graph (MSFAAG) is introduced to structured MBD model as the carrier of the digital twin product model. The MSFAAG is then embedded into continuous vector spaces using a GNN to obtain the categorization of these MBD models. Finally, DRL is used to adaptively identify more important semantic features, including manufacturing semantics and functional semantics, to obtain more detailed model classification results. The experiment effectively improves the reuse efficiency of the non-geometric aspects of the digital twin product and MBD model. Compared with other traditional recommendation algorithms, the algorithm proposed in this paper has higher accuracy and can well meet the design requirements of users.KEYWORDS: Model based definitiongraph neural networksdeep reinforcement learningreuse, recommendation AcknowledgementsThis work was supported in part by the National Natural Science Foundation of China under Grant No.61672461 and No.62073293.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61672461].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
独特亦旋完成签到,获得积分20
4秒前
今后应助qqqqqq采纳,获得10
5秒前
小马甲应助飞羽采纳,获得10
5秒前
星辰大海应助西内!卡Q因采纳,获得10
6秒前
6秒前
彬彬发布了新的文献求助10
7秒前
太叔捕完成签到,获得积分10
7秒前
高磊发布了新的文献求助10
8秒前
RH完成签到,获得积分10
8秒前
zhangzhen完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助zfzf0422采纳,获得10
11秒前
Wendy1204发布了新的文献求助10
12秒前
12秒前
lydy1993完成签到,获得积分10
13秒前
14秒前
滴滴哒哒完成签到 ,获得积分10
14秒前
SciGPT应助波波玛奇朵采纳,获得10
16秒前
戏言121完成签到,获得积分10
16秒前
迷人的映雁完成签到,获得积分10
17秒前
17秒前
美丽的之双完成签到,获得积分10
18秒前
阿会完成签到,获得积分10
18秒前
wqm完成签到,获得积分10
19秒前
戏言121发布了新的文献求助10
20秒前
20秒前
21秒前
优雅的流沙完成签到 ,获得积分10
22秒前
猫的海完成签到,获得积分10
22秒前
22秒前
Eason Liu完成签到,获得积分0
23秒前
Wendy1204完成签到,获得积分20
23秒前
Hello应助654采纳,获得10
23秒前
咩咩羊完成签到,获得积分10
23秒前
27秒前
lianqing完成签到,获得积分10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824