Semi-supervised medical image segmentation via hard positives oriented contrastive learning

计算机科学 人工智能 嵌入 分割 特征向量 模式识别(心理学) 编码器 特征(语言学) 边距(机器学习) 图像分割 特征学习 判别式 机器学习 哲学 语言学 操作系统
作者
Cheng Tang,Xinyi Zeng,Luping Zhou,Qizheng Zhou,Peng Wang,Xi Wu,Hongping Ren,Jiliu Zhou,Yan Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110020-110020 被引量:23
标识
DOI:10.1016/j.patcog.2023.110020
摘要

Semi-supervised learning (SSL) has been a popular technique to resolve the annotation scarcity problem in pattern recognition and medical image segmentation, which usually focuses on two critical issues: 1) learning a well-structured categorizable embedding space, and 2) establishing a robust mapping from the embedding space to the pixel space. In this paper, to resolve the first issue, we propose a hard positives oriented contrastive (HPC) learning strategy to pre-train an encoder-decoder-based segmentation model. Different from vanilla contrastive learning tending to focus only on hard negatives, our HPC learning strategy additionally concentrates on hard positives (i.e., samples with the same category but dissimilar feature representations to the anchor), which are considered to play an even more crucial role in delivering discriminative knowledge for semi-supervised medical image segmentation. Specifically, the HPC is constructed from two levels, including an unsupervised image-level HPC (IHPC) and a supervised pixel-level HPC (PHPC), empowering the embedding space learned by the encoder with both local and global senses. Particularly, the PHPC learning strategy is implemented in a region-based manner, saving memory usage while delivering more multi-granularity information. In response to the second issue, we insert several feature swap (FS) modules into the pre-trained decoder. These FS modules aim to perturb the mapping from the intermediate embedding space towards the pixel space, trying to encourage more robust segmentation predictions. Experiments on two public clinical datasets demonstrate that our proposed framework surpasses the state-of-the-art methods by a large margin. Source codes are available at https://github.com/PerPerZXY/BHPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
urologywang完成签到 ,获得积分10
1秒前
小公牛完成签到 ,获得积分10
2秒前
双手外科结完成签到,获得积分10
6秒前
7秒前
RFlord发布了新的文献求助10
14秒前
李健的小迷弟应助Lumi采纳,获得30
16秒前
23秒前
海英完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助30
57秒前
1分钟前
小点完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
Lumi发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
蓝豆子完成签到 ,获得积分10
1分钟前
Superman完成签到 ,获得积分10
1分钟前
alan完成签到 ,获得积分0
1分钟前
jiangjiang完成签到,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
leaolf应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
211fjfj完成签到 ,获得积分10
1分钟前
追梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
梦XING完成签到 ,获得积分10
1分钟前
背书强完成签到 ,获得积分10
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
manmanzhong完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Mason完成签到 ,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128435
求助须知:如何正确求助?哪些是违规求助? 4331130
关于积分的说明 13494178
捐赠科研通 4167056
什么是DOI,文献DOI怎么找? 2284336
邀请新用户注册赠送积分活动 1285334
关于科研通互助平台的介绍 1225882