Semi-supervised medical image segmentation via hard positives oriented contrastive learning

计算机科学 人工智能 嵌入 分割 特征向量 模式识别(心理学) 编码器 特征(语言学) 边距(机器学习) 图像分割 特征学习 判别式 机器学习 哲学 语言学 操作系统
作者
Cheng Tang,Xinyi Zeng,Luping Zhou,Qizheng Zhou,Peng Wang,Xi Wu,Hongping Ren,Jiliu Zhou,Yan Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110020-110020 被引量:16
标识
DOI:10.1016/j.patcog.2023.110020
摘要

Semi-supervised learning (SSL) has been a popular technique to resolve the annotation scarcity problem in pattern recognition and medical image segmentation, which usually focuses on two critical issues: 1) learning a well-structured categorizable embedding space, and 2) establishing a robust mapping from the embedding space to the pixel space. In this paper, to resolve the first issue, we propose a hard positives oriented contrastive (HPC) learning strategy to pre-train an encoder-decoder-based segmentation model. Different from vanilla contrastive learning tending to focus only on hard negatives, our HPC learning strategy additionally concentrates on hard positives (i.e., samples with the same category but dissimilar feature representations to the anchor), which are considered to play an even more crucial role in delivering discriminative knowledge for semi-supervised medical image segmentation. Specifically, the HPC is constructed from two levels, including an unsupervised image-level HPC (IHPC) and a supervised pixel-level HPC (PHPC), empowering the embedding space learned by the encoder with both local and global senses. Particularly, the PHPC learning strategy is implemented in a region-based manner, saving memory usage while delivering more multi-granularity information. In response to the second issue, we insert several feature swap (FS) modules into the pre-trained decoder. These FS modules aim to perturb the mapping from the intermediate embedding space towards the pixel space, trying to encourage more robust segmentation predictions. Experiments on two public clinical datasets demonstrate that our proposed framework surpasses the state-of-the-art methods by a large margin. Source codes are available at https://github.com/PerPerZXY/BHPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖建琛完成签到 ,获得积分10
1秒前
1秒前
1秒前
哆啦顺利毕业完成签到,获得积分10
2秒前
2秒前
32完成签到 ,获得积分10
2秒前
曼尼完成签到,获得积分10
2秒前
安安完成签到 ,获得积分10
2秒前
花生爱发文完成签到,获得积分10
3秒前
搜集达人应助大晨采纳,获得10
3秒前
梦幻完成签到 ,获得积分10
3秒前
3秒前
半糖完成签到,获得积分10
3秒前
蔡小葵完成签到,获得积分10
4秒前
Drew发布了新的文献求助10
4秒前
ruxing发布了新的文献求助10
5秒前
在水一方应助Li采纳,获得10
6秒前
科研CY完成签到,获得积分10
6秒前
司徒迎曼发布了新的文献求助10
6秒前
无花果应助su采纳,获得10
6秒前
简隋英完成签到,获得积分20
6秒前
深情安青应助曾友采纳,获得10
6秒前
稳重的灵安完成签到,获得积分10
6秒前
7秒前
grzzz完成签到,获得积分10
7秒前
xyz发布了新的文献求助10
7秒前
公西元柏发布了新的文献求助10
7秒前
8秒前
8秒前
wary发布了新的文献求助10
8秒前
9秒前
简隋英发布了新的文献求助30
9秒前
niu完成签到,获得积分10
9秒前
Qing灿完成签到,获得积分10
9秒前
粒子一号完成签到,获得积分10
10秒前
FY完成签到,获得积分10
10秒前
Aurora完成签到,获得积分10
10秒前
11秒前
11秒前
柔弱凡松完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762