Semi-supervised medical image segmentation via hard positives oriented contrastive learning

计算机科学 人工智能 嵌入 分割 特征向量 模式识别(心理学) 编码器 特征(语言学) 边距(机器学习) 图像分割 特征学习 判别式 机器学习 哲学 语言学 操作系统
作者
Cheng Tang,Xinyi Zeng,Luping Zhou,Qizheng Zhou,Peng Wang,Xi Wu,Hongping Ren,Jiliu Zhou,Yan Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110020-110020 被引量:45
标识
DOI:10.1016/j.patcog.2023.110020
摘要

Semi-supervised learning (SSL) has been a popular technique to resolve the annotation scarcity problem in pattern recognition and medical image segmentation, which usually focuses on two critical issues: 1) learning a well-structured categorizable embedding space, and 2) establishing a robust mapping from the embedding space to the pixel space. In this paper, to resolve the first issue, we propose a hard positives oriented contrastive (HPC) learning strategy to pre-train an encoder-decoder-based segmentation model. Different from vanilla contrastive learning tending to focus only on hard negatives, our HPC learning strategy additionally concentrates on hard positives (i.e., samples with the same category but dissimilar feature representations to the anchor), which are considered to play an even more crucial role in delivering discriminative knowledge for semi-supervised medical image segmentation. Specifically, the HPC is constructed from two levels, including an unsupervised image-level HPC (IHPC) and a supervised pixel-level HPC (PHPC), empowering the embedding space learned by the encoder with both local and global senses. Particularly, the PHPC learning strategy is implemented in a region-based manner, saving memory usage while delivering more multi-granularity information. In response to the second issue, we insert several feature swap (FS) modules into the pre-trained decoder. These FS modules aim to perturb the mapping from the intermediate embedding space towards the pixel space, trying to encourage more robust segmentation predictions. Experiments on two public clinical datasets demonstrate that our proposed framework surpasses the state-of-the-art methods by a large margin. Source codes are available at https://github.com/PerPerZXY/BHPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
共享精神应助王丽雅采纳,获得10
2秒前
小马同学发布了新的文献求助10
2秒前
香蕉觅云应助专注白昼采纳,获得10
2秒前
2秒前
星星完成签到,获得积分10
2秒前
他方世界应助刘桑桑采纳,获得10
3秒前
万能图书馆应助一个奎采纳,获得10
3秒前
上官若男应助向七郎采纳,获得10
4秒前
nana完成签到,获得积分10
4秒前
科目三应助明亮如花采纳,获得10
4秒前
4秒前
wuuToiiin完成签到,获得积分10
5秒前
阿里院士完成签到,获得积分10
5秒前
5秒前
scc发布了新的文献求助10
5秒前
文艺的蜜蜂完成签到 ,获得积分10
5秒前
yllcjl发布了新的文献求助10
6秒前
Mercury发布了新的文献求助10
6秒前
半夏完成签到 ,获得积分20
6秒前
6秒前
房东的猫发布了新的文献求助10
6秒前
Suchen完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
WYxipu完成签到,获得积分20
8秒前
卷aaaa完成签到,获得积分10
8秒前
搜集达人应助kks569采纳,获得10
9秒前
9秒前
9秒前
李爱国应助米酒汤圆采纳,获得10
9秒前
迷路藏鸟发布了新的文献求助10
9秒前
单薄夏山完成签到,获得积分10
10秒前
万能图书馆应助丑小鸭采纳,获得10
10秒前
小诸葛完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485