Semi-supervised medical image segmentation via hard positives oriented contrastive learning

计算机科学 人工智能 嵌入 分割 特征向量 模式识别(心理学) 编码器 特征(语言学) 边距(机器学习) 图像分割 特征学习 判别式 机器学习 哲学 语言学 操作系统
作者
Cheng Tang,Xinyi Zeng,Luping Zhou,Qizheng Zhou,Peng Wang,Xi Wu,Hongping Ren,Jiliu Zhou,Yan Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110020-110020 被引量:45
标识
DOI:10.1016/j.patcog.2023.110020
摘要

Semi-supervised learning (SSL) has been a popular technique to resolve the annotation scarcity problem in pattern recognition and medical image segmentation, which usually focuses on two critical issues: 1) learning a well-structured categorizable embedding space, and 2) establishing a robust mapping from the embedding space to the pixel space. In this paper, to resolve the first issue, we propose a hard positives oriented contrastive (HPC) learning strategy to pre-train an encoder-decoder-based segmentation model. Different from vanilla contrastive learning tending to focus only on hard negatives, our HPC learning strategy additionally concentrates on hard positives (i.e., samples with the same category but dissimilar feature representations to the anchor), which are considered to play an even more crucial role in delivering discriminative knowledge for semi-supervised medical image segmentation. Specifically, the HPC is constructed from two levels, including an unsupervised image-level HPC (IHPC) and a supervised pixel-level HPC (PHPC), empowering the embedding space learned by the encoder with both local and global senses. Particularly, the PHPC learning strategy is implemented in a region-based manner, saving memory usage while delivering more multi-granularity information. In response to the second issue, we insert several feature swap (FS) modules into the pre-trained decoder. These FS modules aim to perturb the mapping from the intermediate embedding space towards the pixel space, trying to encourage more robust segmentation predictions. Experiments on two public clinical datasets demonstrate that our proposed framework surpasses the state-of-the-art methods by a large margin. Source codes are available at https://github.com/PerPerZXY/BHPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
太空完成签到,获得积分10
1秒前
2秒前
leemiii完成签到 ,获得积分10
3秒前
3秒前
3秒前
纪你巴发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
zhuzhu发布了新的文献求助10
6秒前
刘英岑发布了新的文献求助10
6秒前
kelakola完成签到,获得积分10
7秒前
7秒前
恰逢发布了新的文献求助10
7秒前
科研通AI6应助研友_Lmg01Z采纳,获得10
7秒前
guojingjing发布了新的文献求助10
7秒前
8秒前
赘婿应助monkey采纳,获得10
8秒前
8秒前
科研之家完成签到,获得积分10
9秒前
9秒前
ZZZ完成签到,获得积分10
10秒前
寒霜扬名完成签到 ,获得积分10
10秒前
10秒前
小蘑菇应助王梦秋采纳,获得10
11秒前
酷波er应助小李爱查文献采纳,获得10
12秒前
万能图书馆应助陈陈采纳,获得10
13秒前
perseverance发布了新的文献求助10
13秒前
13秒前
不止夏天发布了新的文献求助10
14秒前
seattle完成签到,获得积分10
14秒前
第七兵团司令完成签到,获得积分10
14秒前
16秒前
谷云应助guojingjing采纳,获得10
16秒前
如如完成签到,获得积分10
16秒前
16秒前
anny.white完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
科目三应助Mmmmarys采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812