High-Performance All-Solid-State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites

锂(药物) 共价键 金属锂 离子键合 材料科学 固态 金属 复合材料 化学工程 离子 化学 电极 冶金 有机化学 工程类 物理化学 医学 电解质 内分泌学
作者
Jun Huang,Cheng Liu,Zhenyang Zhang,C.R. Li,Ki‐Taek Bang,Andrew Liem,Hang Luo,Chuan Hu,Young Moo Lee,Yingying Lü,Yanming Wang,Yoonseob Kim
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4015490/v1
摘要

Abstract Ionic covalent organic frameworks (iCOFs) are crystalline materials with stable porous structures. They hold great potential for ion transport, particularly as solid-state electrolytes (SSEs) for all-solid-state Lithium metal batteries (ASSLMBs). However, achieving an ionic conductivity of over 10 −3 S cm −1 at room temperature using pure-iCOF-based SSEs, even adding additives such as lithium salts, is challenging as the voids work as strong resistances. Thus, highly conductive iCOFs typically require quasi-solid-state configurations with organic solvents or plasticizers. In this study, we prepared composites comprising iCOFs and poly(ionic liquid) (PIL) to make all-solid-state iCOFs electrolytes with an exceptional ionic conductivity up to 1.50 × 10 −3 S cm −1 and a high Li + transference number of > 0.80 at room temperature. Combined experimental and computational studies showed that the co-coordination and competitive coordination mechanism established between the PIL, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and iCOFs enabled rapid Li + transport while restricting TFSI − movement. ASSLMB cells, made of composite SSEs and LiFePO 4 composite cathode, demonstrated an initial discharge capacity of 141.5 mAh g −1 at 1 C and r.t., with an impressive capacity retention of 87% up to 800 cycles. Overall, this work presents a breakthrough approach for developing advanced SSEs for next-generation high-energy-density ASSLMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助玲玲采纳,获得10
刚刚
李健应助任正欣采纳,获得10
刚刚
NHN发布了新的文献求助10
1秒前
慕慕完成签到 ,获得积分10
2秒前
2秒前
桐桐应助moub采纳,获得10
2秒前
天天快乐应助baby采纳,获得10
2秒前
彭于晏应助123y采纳,获得10
3秒前
3秒前
Jasper应助yimei采纳,获得10
3秒前
Haley完成签到 ,获得积分10
4秒前
wei发布了新的文献求助10
4秒前
4秒前
小夏完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
7秒前
xxxwwwx完成签到,获得积分10
7秒前
Akim应助善良晓博采纳,获得10
7秒前
7秒前
7秒前
李天完成签到,获得积分10
7秒前
温情完成签到,获得积分20
8秒前
在水一方应助哭泣的盼易采纳,获得20
8秒前
8秒前
郭豪琪发布了新的文献求助10
9秒前
9秒前
10秒前
归尘应助gengwanlei采纳,获得30
11秒前
11秒前
xy发布了新的文献求助10
11秒前
认真难敌完成签到,获得积分10
11秒前
12秒前
SYLH应助zy采纳,获得10
12秒前
13秒前
128完成签到,获得积分20
13秒前
13秒前
13秒前
时间发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541718
求助须知:如何正确求助?哪些是违规求助? 3119062
关于积分的说明 9337855
捐赠科研通 2816934
什么是DOI,文献DOI怎么找? 1548825
邀请新用户注册赠送积分活动 721728
科研通“疑难数据库(出版商)”最低求助积分说明 712781