A Two-Stage Estimation Strategy Based on A Multi-State Model for State-of-Health of Lithium-Ion Batteries

锂(药物) 估计 国家(计算机科学) 健康状况 阶段(地层学) 计算机科学 离子 可靠性工程 化学 系统工程 工程类 医学 算法 电池(电) 物理 热力学 生物 内科学 功率(物理) 古生物学 有机化学
作者
Xuexia Zhang,Sidi Dong,Ruike Huang,Lei Huang,Z. X. Shi,Yilin Meng
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3373513
摘要

The state of health (SOH) is a significant index for the safe and reliable performance of lithium-ion batteries (LIBs). Although electrochemical impedance spectroscopy (EIS) is a promising nondestructive technique for SOH estimation, existing investigations rarely apply EIS to establish SOH estimation mathematical models. Considering the SOH estimation model based on EIS is imposed by the nonlinear and coupled constraints including temperature and state of charge (SOC), in this paper, the charge transfer resistance is extracted first as the aging feature through EIS analysis under different conditions of SOH, SOC, and temperature. Then, a multi-state SOH model is developed based on the charge transfer resistance. The model quantitatively elucidates the interdependencies among charge transfer resistance, SOH, SOC, and temperature. A two-stage SOH estimation strategy is subsequently proposed based on the proposed model to address the inferior of accuracy from the traditional probabilistic model for SOH estimation due to inaccurate model parameters. Specifically, in the first stage, the SOH is initialized. In the second stage, SOH is re-estimated based on optimal point parameters selected by the SOH obtained in the first stage. Finally, the proposed estimation strategy for SOH is verified through experiments, where the estimation maximum RMSE is less than 0.04. Compared to the previous methods, the proposed strategy demonstrates more accuracy in SOH estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Island发布了新的文献求助10
刚刚
hu970发布了新的文献求助10
刚刚
九九发布了新的文献求助10
刚刚
123456完成签到,获得积分10
刚刚
BareBear应助龙妍琳采纳,获得10
刚刚
赘婿应助wary采纳,获得10
1秒前
小蘑菇应助wary采纳,获得10
1秒前
上官若男应助wary采纳,获得10
1秒前
李爱国应助木子采纳,获得10
1秒前
烟花应助马佳凯采纳,获得10
1秒前
1秒前
LYL完成签到,获得积分10
2秒前
2秒前
得意凡人完成签到,获得积分10
2秒前
2秒前
害怕的擎宇完成签到,获得积分10
3秒前
柳絮完成签到,获得积分20
3秒前
4秒前
赫连烙发布了新的文献求助10
4秒前
目遇给目遇的求助进行了留言
5秒前
Arnold发布了新的文献求助10
6秒前
在九月完成签到 ,获得积分10
6秒前
selfevidbet发布了新的文献求助30
6秒前
通~发布了新的文献求助10
6秒前
靓仔完成签到,获得积分10
6秒前
妙手回春板蓝根完成签到,获得积分10
6秒前
7秒前
11完成签到,获得积分10
8秒前
1111完成签到,获得积分10
8秒前
777完成签到,获得积分10
9秒前
junzilan发布了新的文献求助10
9秒前
9秒前
sun应助leave采纳,获得20
9秒前
9秒前
10秒前
10秒前
Loooong应助小房子采纳,获得10
11秒前
11秒前
云_123完成签到,获得积分10
12秒前
hf发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762