已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atomistic insights into the thermal transport properties of inorganic components of solid electrolyte interphase (SEI) in lithium-ion batteries

电解质 材料科学 热导率 快离子导体 锂(药物) 相间 电化学 无定形固体 化学工程 热的 化学物理 热力学 物理化学 化学 复合材料 有机化学 电极 医学 物理 生物 工程类 遗传学 内分泌学
作者
Jia Liu,Li‐Wu Fan
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:221: 125069-125069
标识
DOI:10.1016/j.ijheatmasstransfer.2023.125069
摘要

The thermal behavior during operation of Lithium-ion batteries (LIBs) is widely concerned with respect to their electrochemical performance and safety. The solid electrolyte interphase (SEI) is a critical layer formed during electrochemical reactions in LIBs. A thorough understanding of SEI's thermal transport properties is essential to identify limitations within the internal heat transfer of LIBs. In this work, a computational study of the thermal transport through SEI was performed based on classical molecular dynamics (MD) simulations. Three representative inorganic components of SEI, namely Li2CO3, Li2O and LiF, were explored. First, the force fields were evaluated for accurate MD simulations. Subsequently, the impact of structural properties and temperatures on the thermal conductivities of SEI were investigated, followed by discussion on radial distribution functions and vibrational density of states. It was found that the comparison of thermal conductivity of the ordered crystals is Li2O > LiF > Li2CO3. As temperature increases, the thermal conductivity of inorganic components decreases significantly. Additionally, it was discovered that the thermal conductivity of amorphous compounds is notably lower than that of ideal crystals and is closely related to the molar ratio of inorganic components. The results of this work can help understand the thermal transport properties of SEI and offer valuable insights for the design of electrolytes and SEI toward improving the thermal safety performance of LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双黄应助uziMOF采纳,获得10
2秒前
IrisYu发布了新的文献求助10
3秒前
温良恭俭让完成签到,获得积分10
4秒前
5秒前
5秒前
Lucas应助酷酷河马采纳,获得10
6秒前
6秒前
largpark完成签到 ,获得积分10
6秒前
samantha发布了新的文献求助10
7秒前
王赛文完成签到,获得积分10
7秒前
8秒前
qxy发布了新的文献求助50
10秒前
10秒前
卢敏明发布了新的文献求助10
10秒前
zzmm应助万枣今天学习了吗采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得30
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助感动的百川采纳,获得10
13秒前
13秒前
ok完成签到,获得积分10
15秒前
小二郎应助neechine采纳,获得10
19秒前
Ericlee发布了新的文献求助10
20秒前
20秒前
20秒前
打打应助糖ing采纳,获得20
21秒前
CipherSage应助安静的惜海采纳,获得10
22秒前
嘟嘟发布了新的文献求助10
23秒前
肉丸发布了新的文献求助10
25秒前
xvzhenyuan发布了新的文献求助30
26秒前
丘比特应助Pengh采纳,获得10
27秒前
我要读博士完成签到 ,获得积分10
28秒前
Hello应助胡林采纳,获得10
29秒前
30秒前
肚皮完成签到 ,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798