Quality monitoring of injection molding based on TSO-SVM and MOSSA

支持向量机 收缩率 造型(装饰) 体积热力学 过程(计算) 超参数 计算机科学 材料科学 机器学习 复合材料 物理 量子力学 操作系统
作者
Wenjie Ding,Xinping Fan,Yonghuan Guo,Xiangning Lu,Dezhao Wang,Changjing Wang,Xinran Zhang
出处
期刊:Journal of Polymer Engineering [De Gruyter]
卷期号:44 (1): 64-72
标识
DOI:10.1515/polyeng-2023-0168
摘要

Abstract Based on the tuna swarm optimization-based support vector machine (TSO-SVM) and the multi-objective sparrow search algorithm (MOSSA), this paper proposes a multi-objective optimization approach for injection molding of thin-walled plastic components, addressing the issues of warpage deformation and volume shrinkage that compromise molding quality. Firstly, data samples are obtained based on the Box–Behnken experimental design and computer-aided engineering (CAE) simulation. Subsequently, SVM is employed to build a predictive model between the experimental factors and quality objectives. Additionally, the TSO is applied to optimize the hyperparameters of SVM, aiming to enhance its regression performance and prediction accuracy. Finally, the MOSSA is employed for multi-objective optimization, combined with the CRITIC scoring method for decision-making, to obtain the optimal combination of process parameters. The obtained parameters are then validated through simulation in Moldflow software. After optimization, the warpage deformation is reduced to 0.5085 mm, and the volume shrinkage rate is decreased to 7.573 %, representing a significant reduction of 40.9 % and 18.1 %, respectively, compared to the pre-optimized results. The remarkable improvement demonstrates the effectiveness of the method based on TSO-SVM and MOSSA for the efficient monitoring of the injection molding process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
清晏完成签到,获得积分10
3秒前
曲书文完成签到,获得积分10
4秒前
李瑞瑞发布了新的文献求助10
4秒前
5123完成签到,获得积分10
4秒前
勤劳落雁发布了新的文献求助10
4秒前
4秒前
7秒前
xuxu完成签到 ,获得积分10
7秒前
8秒前
毛毛虫发布了新的文献求助10
8秒前
科研通AI5应助朴斓采纳,获得10
9秒前
陈彦冰完成签到,获得积分10
9秒前
tianny完成签到,获得积分10
10秒前
浪迹天涯发布了新的文献求助10
11秒前
星星发布了新的文献求助10
11秒前
李瑞瑞完成签到,获得积分10
12秒前
12秒前
14秒前
星辰大海应助jy采纳,获得10
14秒前
15秒前
我是站长才怪应助Khr1stINK采纳,获得10
15秒前
16秒前
xh完成签到,获得积分10
17秒前
para_团结完成签到,获得积分10
18秒前
怡然剑成发布了新的文献求助10
18秒前
19秒前
19秒前
ipeakkka发布了新的文献求助10
19秒前
George完成签到,获得积分10
21秒前
WDK完成签到,获得积分10
21秒前
情怀应助敏感的芷采纳,获得10
21秒前
Orange应助方勇飞采纳,获得10
22秒前
FashionBoy应助烂漫驳采纳,获得10
22秒前
23秒前
24秒前
大鱼完成签到,获得积分10
24秒前
24秒前
lu完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824