A Novel Dual-Robot Accurate Calibration Method Using Convex Optimization and Lie Derivative

凸优化 数学优化 机器人 工业机器人 数学 计算机科学 算法 人工智能 正多边形 几何学
作者
Cheng Jiang,Wenlong Li,Wenpan Li,Dongfang Wang,Lijun Zhu,Wei Xu,Huan Zhao,Han Ding
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 960-977 被引量:11
标识
DOI:10.1109/tro.2023.3344025
摘要

Calibrating unknown transformation relationships is an essential task for multi-robot cooperative systems. Traditional linear methods are inadequate to decouple and simultaneously solve the unknown matrices due to their intercoupling. This paper proposes a novel dual-robot accurate calibration method that uses convex optimization and Lie derivative to solve the dual-robot calibration problem simultaneously. The key idea is that a convex optimization model based on dual-robot transformation chain is established using Lie representation of SE(3). The Jacobian matrix of the established optimization model is explicitly derived using the corresponding Lie derivative of SE(3). To balance the influence of the magnitudes of the rotational and translational optimization variables, a weight coefficient is defined. Due to the closure and smoothness of Lie group, the optimization model can be solved simultaneously using Newton-like iterative methods without additional orthogonalization processing. The performance of the proposed method is verified through simulation and actual calibration experiments. The results show that the proposed method outperforms the previous calibration methods in terms of accuracy and stability. The actual experiments are used to compare the proposed method with two existing calibration methods, and the mean measurement error of a certified ceramic sphere is reduced from 0.9205mm and 0.5363mm to 0.4381mm, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Yuan采纳,获得10
1秒前
欣喜乐安发布了新的文献求助10
3秒前
Akim应助活力的语堂采纳,获得10
3秒前
茗牌棉花完成签到,获得积分10
5秒前
5秒前
情怀应助tejing1158采纳,获得10
8秒前
nowss完成签到,获得积分10
8秒前
9秒前
公瑾发布了新的文献求助10
11秒前
11秒前
11秒前
Akim应助欣喜乐安采纳,获得10
13秒前
剑舞红颜笑完成签到 ,获得积分10
13秒前
完美的宛亦完成签到 ,获得积分10
13秒前
13秒前
三家分晋完成签到,获得积分20
14秒前
乐悠悠完成签到 ,获得积分10
14秒前
15秒前
russing完成签到 ,获得积分10
15秒前
retosure完成签到,获得积分10
16秒前
三家分晋发布了新的文献求助10
17秒前
hui完成签到,获得积分10
17秒前
lafe123456完成签到,获得积分10
18秒前
爆米花应助山上桃花酿采纳,获得10
18秒前
aub发布了新的文献求助10
19秒前
CipherSage应助公瑾采纳,获得10
19秒前
在水一方应助搞怪的之云采纳,获得10
20秒前
微瑕发布了新的文献求助10
20秒前
21秒前
21秒前
吨吨发布了新的文献求助10
21秒前
美女完成签到,获得积分10
22秒前
善学以致用应助耍酷大山采纳,获得10
23秒前
共享精神应助耍酷大山采纳,获得10
23秒前
JamesPei应助耍酷大山采纳,获得10
23秒前
不必要再讨论适合与否完成签到,获得积分0
23秒前
wang完成签到 ,获得积分10
23秒前
洞若观烟火完成签到,获得积分10
24秒前
优雅的平安完成签到 ,获得积分10
24秒前
无私雅柏完成签到 ,获得积分10
26秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345