Unlocking the power of industrial artificial intelligence towards Industry 5.0: Insights, pathways, and challenges

工程类 功率(物理) 制造工程 人工智能 工业工程 计算机科学 物理 量子力学
作者
Jiewu Leng,Xiaofeng Zhu,Zhiqiang Huang,Xingyu Li,Pai Zheng,Xueliang Zhou,Dimitris Mourtzis,Baicun Wang,Qinglin Qi,Haidong Shao,Jiafu Wan,Xin Chen,Lihui Wang,Qiang Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:73: 349-363 被引量:35
标识
DOI:10.1016/j.jmsy.2024.02.010
摘要

With the continuous development of human-centric, resilient, and sustainable manufacturing towards Industry 5.0, Artificial Intelligence (AI) has gradually unveiled new opportunities for additional functionalities, new features, and tendencies in the industrial landscape. On the other hand, the technology-driven Industry 4.0 paradigm is still in full swing. However, there exist many unreasonable designs, configurations, and implementations of Industrial Artificial Intelligence (IndAI) in practice before achieving either Industry 4.0 or Industry 5.0 vision, and a significant gap between the individualized requirement and actual implementation result still exists. To provide insights for designing appropriate models and algorithms in the upgrading process of the industry, this perspective article classifies IndAI by rating the intelligence levels and presents four principles of implementing IndAI. Three significant opportunities of IndAI, namely, collaborative intelligence, self-learning intelligence, and crowd intelligence, towards Industry 5.0 vision are identified to promote the transition from a technology-driven initiative in Industry 4.0 to the coexistence and interplay of Industry 4.0 and a value-oriented proposition in Industry 5.0. Then, pathways for implementing IndAI towards Industry 5.0 together with key empowering techniques are discussed. Social barriers, technology challenges, and future research directions of IndAI are concluded, respectively. We believe that our effort can lay a foundation for unlocking the power of IndAI in futuristic Industry 5.0 research and engineering practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zsy1234发布了新的文献求助10
1秒前
糖包完成签到 ,获得积分10
1秒前
1秒前
Chenly完成签到,获得积分10
2秒前
wille完成签到,获得积分10
2秒前
April_5发布了新的文献求助10
3秒前
significant完成签到,获得积分10
3秒前
顺利的曼寒完成签到 ,获得积分10
4秒前
想飞的猪发布了新的文献求助10
5秒前
有魅力发卡完成签到 ,获得积分10
7秒前
10秒前
慕青应助想飞的猪采纳,获得10
11秒前
罗小黑发布了新的文献求助10
11秒前
小马甲应助秋浱采纳,获得10
13秒前
Charlie完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
麋鹿发布了新的文献求助10
15秒前
mingzhu完成签到,获得积分10
15秒前
儒雅的冷松完成签到,获得积分10
16秒前
16秒前
16秒前
konosuba完成签到,获得积分10
17秒前
17秒前
18秒前
聪慧鸭子发布了新的文献求助10
20秒前
小马甲应助沉静念真采纳,获得10
21秒前
HC发布了新的文献求助10
21秒前
祝愿完成签到 ,获得积分10
22秒前
等待的奇异果完成签到,获得积分10
22秒前
Rourou发布了新的文献求助20
23秒前
好好学习完成签到,获得积分10
23秒前
orixero应助等待的奇异果采纳,获得10
26秒前
郝莫英发布了新的文献求助10
26秒前
我去打球完成签到 ,获得积分10
27秒前
少年完成签到,获得积分10
28秒前
28秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387071
求助须知:如何正确求助?哪些是违规求助? 3000056
关于积分的说明 8788527
捐赠科研通 2685768
什么是DOI,文献DOI怎么找? 1471224
科研通“疑难数据库(出版商)”最低求助积分说明 680200
邀请新用户注册赠送积分活动 672872