等容过程
食品科学
鸡胸脯
质量(理念)
化学
热力学
物理
量子力学
作者
Tsekwi Gracious Rinwi,Da‐Wen Sun,Ji Ma,Xiaogang Wang
标识
DOI:10.1016/j.fbio.2024.103641
摘要
This study investigated the impact of isochoric freezing-thawing (ISF-T) cycles (C0–C5) on the quality of chicken breast. The results indicated a significant increase (P < 0.05) in pH from 5.41 to 5.96 after C1 to C4 before slightly decreasing to 5.72 (C5). Lightness (L*) varied between 50.13 and 44.55 across C1 to C4, with redness notably decreasing from −1.15 after C0 to −2.09 after C5 while yellowness (b) sharply increased from 2.65 (C0) to 4.65 (C5). Moisture content decreased from 74.01% to 68.13% after C5. WHC slightly reduced from 89.25% after C0 to 85.66% after C4, with an 83.78% reduction after C5. Cooking loss increased linearly across the ISF-T cycles from 18.08% reaching 24.14% after C5. Conversely, shear force decreased to 21.83 N after C5 from 25.21 N after C1. Protein solubility slowly increased to 88.79% after C3, then decreased to 72.84 after C5. The myofibrillar index remained stable until C3, then increased from 35.51 after C5. Lipid oxidation slowly increased to 0.27 mg MDA/kg after C3, then sharply increased to 0.44 mg MDA/kg after C5. In addition, Ca2+-ATPase activity showed that the samples obtained after C1 to C3 fluctuated between 23.59% and 24.71%, followed by a substantial reduction to 12.35% after C5. Furthermore, validation of the results by magnetic resonance imaging and nuclear magnetic resonance analysis confirmed the findings, suggesting that isochoric freezing could offer a viable solution to control temperature fluctuations, a challenging problem during meat storage and distribution in the cold chain food industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI