亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How false data affects machine learning models in electrochemistry?

电化学 计算机科学 人工智能 机器学习 化学 电极 物理化学
作者
Krittapong Deshsorn,Luckhana Lawtrakul,Pawin Iamprasertkun
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:597: 234127-234127
标识
DOI:10.1016/j.jpowsour.2024.234127
摘要

False data is detrimental to the prediction of machine learning in chemistry. But some models are more tolerant to noise than others. The selection of machine learning models in electrochemistry is based on only the data distribution without concerning the quality of the data. This study aims to provide a discussion of the failure input data in electrochemistry, which demonstrated using heteroatom doped graphene supercapacitor data. The electrochemical data were tested with 12 standalone models including XGB, LGBM, RF, GB, ADA, NN, ELAS, LASS, RIDGE, SVM, KNN, DT, and our "stacking" model. By gradually adding the false data into the pool, the models were then trained on both noisy and ground truth data to obtain various error metrics (MAE, MSE, RSME, MAPE, and R2). The linear regression was then fitted on the errors to obtain the slope and intercept, which refer to noise sensitivity and base accuracy, respectively. Hence, this study utilized contour plots, SHAP, and PDP to explain how the error affects the electrochemical feature including prediction and analysis. It is found that linear models handle the false data well with an average MAE slope of 1.513 F g−1, but it suffers from prediction accuracy (MAE intercept of 60.20 F g−1). This is due to improper model selection for this type of data (average R2 intercept of 0.25). The "Tree-based" models fail in terms of noise handling (average MAE slope is 58.335 F g−1), but it can provide higher prediction accuracy (average MAE intercept of 30.03 F g−1) than that of linear models. Tree-based models also fit well to the data (average R2 intercept of 0.9516). This suggests that the linear based model can be well described the relationship between capacitance and surface area. While the "Tree based" model can be used for handling the other electrochemical features e.g. amount of heteroatom doped, current density, and so on. Miscellaneous models such as SVM, KNN, and NN, are moderately robust to noise (average MAE slope of 25.956 F g−1) and provide moderate accuracy (average MAE intercept of 41.306 F g−1). The models also fit moderately well to the data (average R2 intercept of 0.546). To address the controversy between prediction accuracy and error handling, the "stacking model" was constructed, which not only shows high accuracy (MAE intercept of 24.29 F g−1), but it also exhibits good noise handling (MAE slope of 41.38 F g−1and R2 intercept of 0.86), making stacking models a relatively low risk and viable choice for electrochemist. This study presents that untuned NN is not suitable for electrochemical data, and improper tuning results in a model that is susceptible to noise, which directly affects the misleading in the electrochemical discussion. Thus, "STACK" models should provide better benefits in that even with untuned base models, it can achieve an accurate and noise tolerance. Overall, this work provides insight into machine learning model selection for electrochemical data, which should aid the understanding of data science in chemistry and energy storage context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
自己发布了新的文献求助10
12秒前
16秒前
closer发布了新的文献求助10
18秒前
传奇3应助自己采纳,获得10
44秒前
closer完成签到,获得积分10
53秒前
某某某完成签到,获得积分10
55秒前
自己完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
lovelife发布了新的文献求助10
1分钟前
1分钟前
聪明的云完成签到 ,获得积分10
2分钟前
阿泽完成签到 ,获得积分10
2分钟前
2分钟前
张泽崇发布了新的文献求助10
2分钟前
1206425219密完成签到,获得积分10
2分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
Aliothae完成签到,获得积分20
4分钟前
科研通AI5应助929采纳,获得10
4分钟前
HLT完成签到 ,获得积分10
4分钟前
4分钟前
小秋发布了新的文献求助10
4分钟前
CC完成签到,获得积分0
4分钟前
4分钟前
4分钟前
5分钟前
Jero21发布了新的文献求助10
5分钟前
小秋完成签到,获得积分10
5分钟前
Jero21完成签到,获得积分20
5分钟前
5分钟前
6分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216