How false data affects machine learning models in electrochemistry?

电化学 计算机科学 人工智能 机器学习 化学 电极 物理化学
作者
Krittapong Deshsorn,Luckhana Lawtrakul,Pawin Iamprasertkun
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:597: 234127-234127
标识
DOI:10.1016/j.jpowsour.2024.234127
摘要

False data is detrimental to the prediction of machine learning in chemistry. But some models are more tolerant to noise than others. The selection of machine learning models in electrochemistry is based on only the data distribution without concerning the quality of the data. This study aims to provide a discussion of the failure input data in electrochemistry, which demonstrated using heteroatom doped graphene supercapacitor data. The electrochemical data were tested with 12 standalone models including XGB, LGBM, RF, GB, ADA, NN, ELAS, LASS, RIDGE, SVM, KNN, DT, and our "stacking" model. By gradually adding the false data into the pool, the models were then trained on both noisy and ground truth data to obtain various error metrics (MAE, MSE, RSME, MAPE, and R2). The linear regression was then fitted on the errors to obtain the slope and intercept, which refer to noise sensitivity and base accuracy, respectively. Hence, this study utilized contour plots, SHAP, and PDP to explain how the error affects the electrochemical feature including prediction and analysis. It is found that linear models handle the false data well with an average MAE slope of 1.513 F g−1, but it suffers from prediction accuracy (MAE intercept of 60.20 F g−1). This is due to improper model selection for this type of data (average R2 intercept of 0.25). The "Tree-based" models fail in terms of noise handling (average MAE slope is 58.335 F g−1), but it can provide higher prediction accuracy (average MAE intercept of 30.03 F g−1) than that of linear models. Tree-based models also fit well to the data (average R2 intercept of 0.9516). This suggests that the linear based model can be well described the relationship between capacitance and surface area. While the "Tree based" model can be used for handling the other electrochemical features e.g. amount of heteroatom doped, current density, and so on. Miscellaneous models such as SVM, KNN, and NN, are moderately robust to noise (average MAE slope of 25.956 F g−1) and provide moderate accuracy (average MAE intercept of 41.306 F g−1). The models also fit moderately well to the data (average R2 intercept of 0.546). To address the controversy between prediction accuracy and error handling, the "stacking model" was constructed, which not only shows high accuracy (MAE intercept of 24.29 F g−1), but it also exhibits good noise handling (MAE slope of 41.38 F g−1and R2 intercept of 0.86), making stacking models a relatively low risk and viable choice for electrochemist. This study presents that untuned NN is not suitable for electrochemical data, and improper tuning results in a model that is susceptible to noise, which directly affects the misleading in the electrochemical discussion. Thus, "STACK" models should provide better benefits in that even with untuned base models, it can achieve an accurate and noise tolerance. Overall, this work provides insight into machine learning model selection for electrochemical data, which should aid the understanding of data science in chemistry and energy storage context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Revovler发布了新的文献求助10
3秒前
3秒前
up发布了新的文献求助10
4秒前
4秒前
QxQMDR发布了新的文献求助10
4秒前
可爱因子发布了新的文献求助10
7秒前
11秒前
科研通AI2S应助笑嘻嘻采纳,获得10
12秒前
Revovler完成签到,获得积分10
12秒前
ossantu发布了新的文献求助10
16秒前
无花果应助儒雅的乐珍采纳,获得10
17秒前
xiaohong完成签到 ,获得积分0
21秒前
up完成签到,获得积分10
23秒前
落后的忆文完成签到,获得积分10
24秒前
在水一方应助acheng采纳,获得10
24秒前
柏林熊完成签到,获得积分10
24秒前
于hhh完成签到 ,获得积分10
25秒前
愉快的千风完成签到,获得积分10
25秒前
27秒前
28秒前
freedom313514完成签到,获得积分10
29秒前
30秒前
30秒前
啄木鸟完成签到,获得积分10
31秒前
科目三应助nZk采纳,获得30
32秒前
明明发布了新的文献求助30
33秒前
liyuqian发布了新的文献求助10
34秒前
zrs发布了新的文献求助10
35秒前
yule完成签到 ,获得积分10
35秒前
西蓝花完成签到,获得积分10
37秒前
爱听歌的菠萝完成签到,获得积分10
38秒前
CipherSage应助zrs采纳,获得10
40秒前
40秒前
仁爱乐萱完成签到,获得积分20
40秒前
氟兊锝钼完成签到 ,获得积分10
41秒前
Albert完成签到 ,获得积分10
43秒前
断鸿完成签到 ,获得积分10
43秒前
bkagyin应助贝肯妮采纳,获得30
43秒前
DARKNESS发布了新的文献求助10
44秒前
醉熏的天薇完成签到,获得积分10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140431
求助须知:如何正确求助?哪些是违规求助? 2791320
关于积分的说明 7798479
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302008
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194