Utilizing nanotechnology and advanced machine learning for early detection of gastric cancer surgery

医学 癌症 转移 Boosting(机器学习) 人工智能 机器学习 外科 内科学 计算机科学
作者
Dan Wu,Jianhua Lu,Nan Zheng,Mohamed Gamal Elsehrawy,Faiz Abdulaziz Alfaiz,Huajun Zhao,Mohammed S. Alqahtani,Hongtao Xu
出处
期刊:Environmental Research [Elsevier BV]
卷期号:245: 117784-117784 被引量:7
标识
DOI:10.1016/j.envres.2023.117784
摘要

Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助li采纳,获得10
刚刚
李李发布了新的文献求助10
刚刚
qu关注了科研通微信公众号
刚刚
辛勤的夏云完成签到,获得积分10
刚刚
如风随水发布了新的文献求助10
1秒前
咩咩羊完成签到,获得积分20
1秒前
黑牙完成签到,获得积分20
1秒前
草原狼发布了新的文献求助10
1秒前
2秒前
善学以致用应助漂亮白云采纳,获得10
2秒前
所所应助Miya_han采纳,获得10
2秒前
小二郎应助PaoPao采纳,获得10
3秒前
妞思佳发布了新的文献求助10
3秒前
诡诈之裤发布了新的文献求助30
4秒前
刘天鹏完成签到,获得积分10
4秒前
esbd完成签到,获得积分10
4秒前
xiu发布了新的文献求助10
4秒前
4秒前
4秒前
邢寻冬完成签到,获得积分10
5秒前
无力完成签到,获得积分10
5秒前
浮游应助Rgly采纳,获得10
5秒前
黑牙发布了新的文献求助10
6秒前
大黄HHS发布了新的文献求助10
6秒前
6秒前
机智如我发布了新的文献求助10
6秒前
7秒前
英姑应助迅速的晟睿采纳,获得10
8秒前
侃侃发布了新的文献求助10
9秒前
鑫炜赵发布了新的文献求助10
10秒前
10秒前
顾子墨发布了新的文献求助10
10秒前
咩咩羊发布了新的文献求助10
10秒前
10秒前
10秒前
林子发布了新的文献求助10
10秒前
yw完成签到,获得积分10
10秒前
qinyi完成签到,获得积分10
11秒前
wengly发布了新的文献求助10
11秒前
龙仔完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103