Utilizing nanotechnology and advanced machine learning for early detection of gastric cancer surgery

医学 癌症 转移 Boosting(机器学习) 人工智能 机器学习 外科 内科学 计算机科学
作者
Dan Wu,Jianhua Lu,Nan Zheng,Mohamed Gamal Elsehrawy,Faiz Abdulaziz Alfaiz,Huajun Zhao,Mohammed S. Alqahtani,Hongtao Xu
出处
期刊:Environmental Research [Elsevier BV]
卷期号:245: 117784-117784 被引量:2
标识
DOI:10.1016/j.envres.2023.117784
摘要

Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安然无恙应助glimmen采纳,获得30
2秒前
Tangviva1988发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
5秒前
肉脸小鱼完成签到 ,获得积分10
5秒前
6秒前
Jerry完成签到,获得积分10
7秒前
ZZ发布了新的文献求助10
8秒前
songjin发布了新的文献求助10
9秒前
da发布了新的文献求助10
9秒前
MchemG应助橘子采纳,获得10
9秒前
我是老大应助朴素的问枫采纳,获得10
9秒前
hghugh完成签到,获得积分20
9秒前
10秒前
cyrus发布了新的文献求助30
10秒前
英俊的铭应助拿铁卢采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
tramp应助科研通管家采纳,获得20
11秒前
tramp应助科研通管家采纳,获得20
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
小豆豆应助科研通管家采纳,获得10
12秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
威武香水应助幽壑之潜蛟采纳,获得10
12秒前
小豆豆应助科研通管家采纳,获得20
12秒前
12秒前
13秒前
xubee发布了新的文献求助10
14秒前
Yue发布了新的文献求助10
16秒前
研友_ngqyz8发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
bronny发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152