亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing nanotechnology and advanced machine learning for early detection of gastric cancer surgery

医学 癌症 转移 Boosting(机器学习) 人工智能 机器学习 外科 内科学 计算机科学
作者
Dan Wu,Jianhua Lu,Nan Zheng,Mohamed Gamal Elsehrawy,Faiz Abdulaziz Alfaiz,Huajun Zhao,Mohammed S. Alqahtani,Hongtao Xu
出处
期刊:Environmental Research [Elsevier]
卷期号:245: 117784-117784 被引量:2
标识
DOI:10.1016/j.envres.2023.117784
摘要

Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124332发布了新的文献求助10
1秒前
1秒前
4秒前
云飞扬完成签到 ,获得积分10
16秒前
124332发布了新的文献求助10
17秒前
yoona发布了新的文献求助10
26秒前
124332发布了新的文献求助10
35秒前
36秒前
大模型应助天才小熊猫采纳,获得10
39秒前
347完成签到,获得积分10
43秒前
124332发布了新的文献求助10
51秒前
jyy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
天才小熊猫完成签到,获得积分10
1分钟前
爆米花应助怕黑的静蕾采纳,获得10
1分钟前
韩帅发布了新的文献求助10
1分钟前
怕黑的静蕾完成签到,获得积分10
1分钟前
桐桐应助韩帅采纳,获得10
1分钟前
科研通AI2S应助韩帅采纳,获得10
1分钟前
wangxc完成签到 ,获得积分10
1分钟前
124332发布了新的文献求助30
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
韩帅完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Nacy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Jing完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265467
求助须知:如何正确求助?哪些是违规求助? 2905505
关于积分的说明 8333941
捐赠科研通 2575798
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532