Multifunctional robot based on multimodal brain-machine interface

计算机科学 脑-机接口 接口(物质) 机器人 陀螺仪 机械臂 特征提取 人工智能 加速度计 支持向量机 特征(语言学) 计算机视觉 模式识别(心理学) 心理学 操作系统 脑电图 工程类 并行计算 航空航天工程 精神科 哲学 语言学 最大气泡压力法 气泡
作者
Nianming Ban,Shanghong Xie,Chao Qu,Xuening Chen,Jiahui Pan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106063-106063 被引量:1
标识
DOI:10.1016/j.bspc.2024.106063
摘要

To address the issues of low control accuracy, insufficient command quantity, and limited machine functionality in brain-machine interfaces (BMIs), we propose a multifunctional robot control system based on a multimodal BMI that fuses three different modalities of signals: SSVEP, EOG, and gyroscope. The system enables control of the robot to perform ten actions, including moving forward, turning left, turning right, stopping, gripping, lifting and lowering the left arm, clockwise and counterclockwise rotation of the left arm elbow and searching and grabbing the ball. Additionally, a new SSVEP paradigm with a two-level menu is designed to allow subjects to switch between different control menus by double blinking, providing sufficient commands with fewer stimulation blocks. In the SSVEP classification experiment, we propose a CNN-BiLSTM network based on the attention module (ACB-Net), which can make the network automatically weight according to the importance of the EEG signals of different channels, resulting in better feature extraction. To demonstrate the superiority of our model, we conducted classification experiments on a public dataset and self-collected dataset with six other SSVEP classification methods, and our model achieved the highest accuracy. In the online experiment, all 16 subjects completed complex tasks, with an average accuracy rate of 93.78% and an average ITR of 93.75 bit/min. Furthermore, we enhanced the robot's functionality by adding visual capabilities, making the control more intelligent. Overall, our proposed system demonstrates precise control over the Nao robot and holds significant potential for applications in both the medical and robotics control domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
光亮归尘完成签到,获得积分10
4秒前
共享精神应助LJL采纳,获得10
5秒前
SciGPT应助长孙烙采纳,获得10
5秒前
上官若男应助Yatpome采纳,获得10
5秒前
jf完成签到 ,获得积分10
6秒前
酷波er应助wangjingni采纳,获得10
6秒前
9秒前
所所应助光亮归尘采纳,获得10
9秒前
臧为完成签到 ,获得积分10
11秒前
prime发布了新的文献求助10
13秒前
丘比特应助科研通管家采纳,获得20
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
坚强的凝荷完成签到,获得积分10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
fanyueyue应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
fanyueyue应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
fanyueyue应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
fanyueyue应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982