Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics

医学 接收机工作特性 分类器(UML) 黑色素瘤 人工智能 黑色素瘤诊断 诊断准确性 机器学习 医学物理学 放射科 癌症研究 内科学 计算机科学
作者
Sarah Haggenmüller,Max Schmitt,Eva Krieghoff‐Henning,Achim Hekler,Roman C. Maron,Christoph Wies,Jochen Utikal,Friedegund Meier,Sarah Hobelsberger,Frank Friedrich Gellrich,Mildred Sergon,Axel Hauschild,Lars E. French,Lucie Heinzerling,Justin Gabriel Schlager,Kamran Ghoreschi,Max Schlaak,Franz J. Hilke,Gabriela Poch,Sören Korsing,Carola Berking,Markus V. Heppt,Michael Erdmann,Sebastian Haferkamp,Konstantin Drexler,Dirk Schadendorf,Wiebke Sondermann,Matthias Goebeler,Bastian Schilling,Jakob Nikolas Kather,Stefan Fröhling,Titus J. Brinker
出处
期刊:JAMA Dermatology [American Medical Association]
被引量:7
标识
DOI:10.1001/jamadermatol.2023.5550
摘要

Importance The development of artificial intelligence (AI)–based melanoma classifiers typically calls for large, centralized datasets, requiring hospitals to give away their patient data, which raises serious privacy concerns. To address this concern, decentralized federated learning has been proposed, where classifier development is distributed across hospitals. Objective To investigate whether a more privacy-preserving federated learning approach can achieve comparable diagnostic performance to a classical centralized (ie, single-model) and ensemble learning approach for AI-based melanoma diagnostics. Design, Setting, and Participants This multicentric, single-arm diagnostic study developed a federated model for melanoma-nevus classification using histopathological whole-slide images prospectively acquired at 6 German university hospitals between April 2021 and February 2023 and benchmarked it using both a holdout and an external test dataset. Data analysis was performed from February to April 2023. Exposures All whole-slide images were retrospectively analyzed by an AI-based classifier without influencing routine clinical care. Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) served as the primary end point for evaluating the diagnostic performance. Secondary end points included balanced accuracy, sensitivity, and specificity. Results The study included 1025 whole-slide images of clinically melanoma-suspicious skin lesions from 923 patients, consisting of 388 histopathologically confirmed invasive melanomas and 637 nevi. The median (range) age at diagnosis was 58 (18-95) years for the training set, 57 (18-93) years for the holdout test dataset, and 61 (18-95) years for the external test dataset; the median (range) Breslow thickness was 0.70 (0.10-34.00) mm, 0.70 (0.20-14.40) mm, and 0.80 (0.30-20.00) mm, respectively. The federated approach (0.8579; 95% CI, 0.7693-0.9299) performed significantly worse than the classical centralized approach (0.9024; 95% CI, 0.8379-0.9565) in terms of AUROC on a holdout test dataset (pairwise Wilcoxon signed-rank, P < .001) but performed significantly better (0.9126; 95% CI, 0.8810-0.9412) than the classical centralized approach (0.9045; 95% CI, 0.8701-0.9331) on an external test dataset (pairwise Wilcoxon signed-rank, P < .001). Notably, the federated approach performed significantly worse than the ensemble approach on both the holdout (0.8867; 95% CI, 0.8103-0.9481) and external test dataset (0.9227; 95% CI, 0.8941-0.9479). Conclusions and Relevance The findings of this diagnostic study suggest that federated learning is a viable approach for the binary classification of invasive melanomas and nevi on a clinically representative distributed dataset. Federated learning can improve privacy protection in AI-based melanoma diagnostics while simultaneously promoting collaboration across institutions and countries. Moreover, it may have the potential to be extended to other image classification tasks in digital cancer histopathology and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李kyt完成签到,获得积分10
1秒前
zhaoxiaonuan完成签到,获得积分10
2秒前
上官若男应助杨19980625采纳,获得10
2秒前
还是做不出来么完成签到,获得积分10
3秒前
overThat发布了新的文献求助10
4秒前
张天翔发布了新的文献求助10
4秒前
5秒前
7秒前
xslj完成签到 ,获得积分10
8秒前
机智ss完成签到,获得积分10
8秒前
棕泡泡鸡完成签到 ,获得积分10
8秒前
善学以致用应助ZQP采纳,获得10
8秒前
Yii完成签到,获得积分10
8秒前
栗子完成签到,获得积分10
9秒前
坐忘完成签到 ,获得积分10
9秒前
10秒前
调研昵称发布了新的文献求助10
10秒前
lize5493发布了新的文献求助10
10秒前
清澄发布了新的文献求助10
11秒前
11秒前
顺利毕业完成签到,获得积分10
12秒前
Yii发布了新的文献求助30
12秒前
香山叶正红完成签到 ,获得积分10
13秒前
搜集达人应助要减肥采纳,获得10
13秒前
忧郁慕青发布了新的文献求助10
14秒前
MissXia完成签到,获得积分10
14秒前
14秒前
Yolo完成签到,获得积分10
15秒前
15秒前
rosalieshi应助hzs采纳,获得30
15秒前
生动的海露完成签到,获得积分10
15秒前
华仔应助冷酷的画板采纳,获得10
16秒前
爱书儿的小周完成签到,获得积分10
16秒前
18秒前
调研昵称发布了新的文献求助10
18秒前
杨19980625发布了新的文献求助10
19秒前
ElbingX发布了新的文献求助30
20秒前
张岱帅z完成签到,获得积分10
21秒前
小程别放弃完成签到,获得积分10
21秒前
YY发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175