已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UniFi

计算机科学 预处理器 人工智能 判别式 保险丝(电气) 一般化 信号(编程语言) 软件部署 深度学习 机器学习 最大化 模式识别(心理学) 工程类 数学分析 数学 微观经济学 电气工程 经济 程序设计语言 操作系统
作者
Yan Liu,Along Yu,Leye Wang,Bin Guo,Yang Li,Enze Yi,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (4): 1-29 被引量:4
标识
DOI:10.1145/3631429
摘要

In recent years, considerable endeavors have been devoted to exploring Wi-Fi-based sensing technologies by modeling the intricate mapping between received signals and corresponding human activities. However, the inherent complexity of Wi-Fi signals poses significant challenges for practical applications due to their pronounced susceptibility to deployment environments. To address this challenge, we delve into the distinctive characteristics of Wi-Fi signals and distill three pivotal factors that can be leveraged to enhance generalization capabilities of deep learning-based Wi-Fi sensing models: 1) effectively capture valuable input to mitigate the adverse impact of noisy measurements; 2) adaptively fuse complementary information from multiple Wi-Fi devices to boost the distinguishability of signal patterns associated with different activities; 3) extract generalizable features that can overcome the inconsistent representations of activities under different environmental conditions (e.g., locations, orientations). Leveraging these insights, we design a novel and unified sensing framework based on Wi-Fi signals, dubbed UniFi, and use gesture recognition as an application to demonstrate its effectiveness. UniFi achieves robust and generalizable gesture recognition in real-world scenarios by extracting discriminative and consistent features unrelated to environmental factors from pre-denoised signals collected by multiple transceivers. To achieve this, we first introduce an effective signal preprocessing approach that captures the applicable input data from noisy received signals for the deep learning model. Second, we propose a multi-view deep network based on spatio-temporal cross-view attention that integrates multi-carrier and multi-device signals to extract distinguishable information. Finally, we present the mutual information maximization as a regularizer to learn environment-invariant representations via contrastive loss without requiring access to any signals from unseen environments for practical adaptation. Extensive experiments on the Widar 3.0 dataset demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in different settings (99% and 90%-98% accuracy for in-domain and cross-domain recognition without additional data collection and model training).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大圆土豆完成签到 ,获得积分10
1秒前
凉白开发布了新的文献求助10
2秒前
2秒前
obedientsheep完成签到,获得积分10
3秒前
sunsuan发布了新的文献求助10
4秒前
4秒前
5秒前
wanidamm完成签到,获得积分10
6秒前
不会游泳的鱼完成签到 ,获得积分10
8秒前
夜行完成签到,获得积分10
12秒前
liuye0202完成签到,获得积分10
13秒前
15秒前
星辰大海应助洪焕良采纳,获得10
16秒前
Jasper应助张西娅采纳,获得10
18秒前
18秒前
19秒前
宝贝丫头完成签到 ,获得积分10
21秒前
兴奋的若菱完成签到 ,获得积分10
22秒前
小满发布了新的文献求助10
23秒前
123发布了新的文献求助10
23秒前
云山乱完成签到,获得积分10
23秒前
26秒前
27秒前
小杨应助哈哈采纳,获得10
27秒前
123456完成签到,获得积分10
29秒前
坐雨赏花完成签到 ,获得积分10
29秒前
30秒前
orixero应助专注酸奶采纳,获得30
31秒前
LYZ发布了新的文献求助10
32秒前
江氏巨颏虎完成签到,获得积分10
32秒前
何何何完成签到 ,获得积分10
34秒前
yuyu发布了新的文献求助10
34秒前
缓慢的听南完成签到 ,获得积分10
36秒前
37秒前
奋斗斓发布了新的文献求助10
37秒前
40秒前
坚强觅珍完成签到 ,获得积分10
40秒前
田様应助小满采纳,获得10
40秒前
haohaohao发布了新的文献求助10
40秒前
45秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345477
求助须知:如何正确求助?哪些是违规求助? 4480424
关于积分的说明 13946213
捐赠科研通 4377929
什么是DOI,文献DOI怎么找? 2405477
邀请新用户注册赠送积分活动 1398087
关于科研通互助平台的介绍 1370475