UniFi

计算机科学 预处理器 人工智能 判别式 保险丝(电气) 一般化 信号(编程语言) 软件部署 深度学习 机器学习 最大化 模式识别(心理学) 工程类 数学分析 数学 微观经济学 电气工程 经济 程序设计语言 操作系统
作者
Yan Liu,Along Yu,Leye Wang,Bin Guo,Yang Li,Enze Yi,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (4): 1-29 被引量:4
标识
DOI:10.1145/3631429
摘要

In recent years, considerable endeavors have been devoted to exploring Wi-Fi-based sensing technologies by modeling the intricate mapping between received signals and corresponding human activities. However, the inherent complexity of Wi-Fi signals poses significant challenges for practical applications due to their pronounced susceptibility to deployment environments. To address this challenge, we delve into the distinctive characteristics of Wi-Fi signals and distill three pivotal factors that can be leveraged to enhance generalization capabilities of deep learning-based Wi-Fi sensing models: 1) effectively capture valuable input to mitigate the adverse impact of noisy measurements; 2) adaptively fuse complementary information from multiple Wi-Fi devices to boost the distinguishability of signal patterns associated with different activities; 3) extract generalizable features that can overcome the inconsistent representations of activities under different environmental conditions (e.g., locations, orientations). Leveraging these insights, we design a novel and unified sensing framework based on Wi-Fi signals, dubbed UniFi, and use gesture recognition as an application to demonstrate its effectiveness. UniFi achieves robust and generalizable gesture recognition in real-world scenarios by extracting discriminative and consistent features unrelated to environmental factors from pre-denoised signals collected by multiple transceivers. To achieve this, we first introduce an effective signal preprocessing approach that captures the applicable input data from noisy received signals for the deep learning model. Second, we propose a multi-view deep network based on spatio-temporal cross-view attention that integrates multi-carrier and multi-device signals to extract distinguishable information. Finally, we present the mutual information maximization as a regularizer to learn environment-invariant representations via contrastive loss without requiring access to any signals from unseen environments for practical adaptation. Extensive experiments on the Widar 3.0 dataset demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in different settings (99% and 90%-98% accuracy for in-domain and cross-domain recognition without additional data collection and model training).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙橙橙橙完成签到,获得积分10
1秒前
丘比特应助毛毛弟采纳,获得10
1秒前
1秒前
no1isme完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
英勇的沛春完成签到 ,获得积分10
3秒前
隐形曼青应助孔大漂亮采纳,获得10
3秒前
丛士乔完成签到,获得积分10
3秒前
3秒前
kiki发布了新的文献求助30
4秒前
cooper完成签到 ,获得积分10
4秒前
HarryQ完成签到,获得积分10
5秒前
wxj发布了新的文献求助10
5秒前
咕咕嘎嘎完成签到,获得积分10
5秒前
6秒前
俭朴的可冥完成签到,获得积分10
6秒前
Yang_728发布了新的文献求助10
6秒前
科研通AI5应助岛屿采纳,获得10
6秒前
Cxxxxxxv完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助50
8秒前
8秒前
TIPHA发布了新的文献求助10
8秒前
艾欧大贝发布了新的文献求助10
9秒前
赘婿应助XYT采纳,获得10
9秒前
科研通AI5应助SONG采纳,获得10
9秒前
9秒前
9秒前
美好向日葵完成签到,获得积分10
10秒前
11秒前
彭于晏应助Sarah采纳,获得10
11秒前
深情安青应助激情的一斩采纳,获得10
11秒前
火星上如松完成签到 ,获得积分10
12秒前
孔大漂亮发布了新的文献求助10
12秒前
Huang_Liuying应助毛毛弟采纳,获得10
13秒前
13秒前
13秒前
你今天学了多少完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917