亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UniFi

计算机科学 预处理器 人工智能 判别式 保险丝(电气) 一般化 信号(编程语言) 软件部署 深度学习 机器学习 最大化 模式识别(心理学) 工程类 数学分析 数学 微观经济学 电气工程 经济 程序设计语言 操作系统
作者
Yan Liu,Along Yu,Leye Wang,Bin Guo,Yang Li,Enze Yi,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (4): 1-29 被引量:4
标识
DOI:10.1145/3631429
摘要

In recent years, considerable endeavors have been devoted to exploring Wi-Fi-based sensing technologies by modeling the intricate mapping between received signals and corresponding human activities. However, the inherent complexity of Wi-Fi signals poses significant challenges for practical applications due to their pronounced susceptibility to deployment environments. To address this challenge, we delve into the distinctive characteristics of Wi-Fi signals and distill three pivotal factors that can be leveraged to enhance generalization capabilities of deep learning-based Wi-Fi sensing models: 1) effectively capture valuable input to mitigate the adverse impact of noisy measurements; 2) adaptively fuse complementary information from multiple Wi-Fi devices to boost the distinguishability of signal patterns associated with different activities; 3) extract generalizable features that can overcome the inconsistent representations of activities under different environmental conditions (e.g., locations, orientations). Leveraging these insights, we design a novel and unified sensing framework based on Wi-Fi signals, dubbed UniFi, and use gesture recognition as an application to demonstrate its effectiveness. UniFi achieves robust and generalizable gesture recognition in real-world scenarios by extracting discriminative and consistent features unrelated to environmental factors from pre-denoised signals collected by multiple transceivers. To achieve this, we first introduce an effective signal preprocessing approach that captures the applicable input data from noisy received signals for the deep learning model. Second, we propose a multi-view deep network based on spatio-temporal cross-view attention that integrates multi-carrier and multi-device signals to extract distinguishable information. Finally, we present the mutual information maximization as a regularizer to learn environment-invariant representations via contrastive loss without requiring access to any signals from unseen environments for practical adaptation. Extensive experiments on the Widar 3.0 dataset demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in different settings (99% and 90%-98% accuracy for in-domain and cross-domain recognition without additional data collection and model training).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里草完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
25秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
2分钟前
李健的粉丝团团长应助lan采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lan完成签到,获得积分10
2分钟前
陈同学完成签到 ,获得积分10
2分钟前
lan发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
siv完成签到,获得积分10
3分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
3分钟前
科研兵发布了新的文献求助10
3分钟前
天天快乐应助shee采纳,获得10
3分钟前
搜集达人应助科研兵采纳,获得10
3分钟前
insomnia417完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
朴素易梦发布了新的文献求助30
5分钟前
5分钟前
6分钟前
6分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
聪明的云完成签到 ,获得积分10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
朴素易梦完成签到,获得积分10
9分钟前
小马甲应助John采纳,获得10
9分钟前
kuoping完成签到,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827