UniFi

计算机科学 预处理器 人工智能 判别式 保险丝(电气) 一般化 信号(编程语言) 软件部署 深度学习 机器学习 最大化 模式识别(心理学) 工程类 数学分析 数学 微观经济学 电气工程 经济 程序设计语言 操作系统
作者
Yan Liu,Along Yu,Leye Wang,Bin Guo,Yang Li,Enze Yi,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (4): 1-29 被引量:4
标识
DOI:10.1145/3631429
摘要

In recent years, considerable endeavors have been devoted to exploring Wi-Fi-based sensing technologies by modeling the intricate mapping between received signals and corresponding human activities. However, the inherent complexity of Wi-Fi signals poses significant challenges for practical applications due to their pronounced susceptibility to deployment environments. To address this challenge, we delve into the distinctive characteristics of Wi-Fi signals and distill three pivotal factors that can be leveraged to enhance generalization capabilities of deep learning-based Wi-Fi sensing models: 1) effectively capture valuable input to mitigate the adverse impact of noisy measurements; 2) adaptively fuse complementary information from multiple Wi-Fi devices to boost the distinguishability of signal patterns associated with different activities; 3) extract generalizable features that can overcome the inconsistent representations of activities under different environmental conditions (e.g., locations, orientations). Leveraging these insights, we design a novel and unified sensing framework based on Wi-Fi signals, dubbed UniFi, and use gesture recognition as an application to demonstrate its effectiveness. UniFi achieves robust and generalizable gesture recognition in real-world scenarios by extracting discriminative and consistent features unrelated to environmental factors from pre-denoised signals collected by multiple transceivers. To achieve this, we first introduce an effective signal preprocessing approach that captures the applicable input data from noisy received signals for the deep learning model. Second, we propose a multi-view deep network based on spatio-temporal cross-view attention that integrates multi-carrier and multi-device signals to extract distinguishable information. Finally, we present the mutual information maximization as a regularizer to learn environment-invariant representations via contrastive loss without requiring access to any signals from unseen environments for practical adaptation. Extensive experiments on the Widar 3.0 dataset demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in different settings (99% and 90%-98% accuracy for in-domain and cross-domain recognition without additional data collection and model training).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故渊丶完成签到 ,获得积分10
3秒前
swordshine完成签到,获得积分0
3秒前
一颗酒窝完成签到 ,获得积分10
4秒前
Will完成签到,获得积分10
8秒前
QAQSS完成签到 ,获得积分10
8秒前
乔凌云完成签到 ,获得积分10
9秒前
btcat完成签到,获得积分0
12秒前
帆320完成签到,获得积分10
13秒前
笨笨摇伽完成签到,获得积分10
14秒前
浮尘完成签到 ,获得积分0
15秒前
燕晓啸完成签到 ,获得积分0
15秒前
轴承完成签到 ,获得积分10
16秒前
液晶屏99完成签到,获得积分10
17秒前
魔幻的早晨完成签到,获得积分10
19秒前
skyspume发布了新的文献求助10
21秒前
grace完成签到 ,获得积分10
23秒前
一粟的粉r完成签到 ,获得积分10
29秒前
尼古拉耶维奇完成签到,获得积分10
29秒前
wait完成签到,获得积分10
30秒前
雪落你看不见完成签到,获得积分10
32秒前
派出所110完成签到 ,获得积分10
34秒前
34秒前
muzi完成签到,获得积分10
35秒前
楚寅完成签到 ,获得积分10
37秒前
skyspume完成签到,获得积分10
38秒前
Wang发布了新的文献求助10
40秒前
苦咖啡行僧完成签到 ,获得积分10
44秒前
zyw完成签到 ,获得积分10
44秒前
jiaqi应助laiwai采纳,获得50
49秒前
54秒前
54秒前
芳芳子呀完成签到,获得积分10
55秒前
高高的哈密瓜完成签到 ,获得积分10
58秒前
海蓝蓝完成签到 ,获得积分10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
需要交流的铅笔完成签到 ,获得积分10
1分钟前
逍遥子完成签到,获得积分10
1分钟前
MS903完成签到,获得积分10
1分钟前
youyuguang完成签到 ,获得积分10
1分钟前
ZL完成签到,获得积分10
1分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387278
求助须知:如何正确求助?哪些是违规求助? 4509381
关于积分的说明 14030918
捐赠科研通 4419966
什么是DOI,文献DOI怎么找? 2428001
邀请新用户注册赠送积分活动 1420653
关于科研通互助平台的介绍 1399767