UniFi

计算机科学 预处理器 人工智能 判别式 保险丝(电气) 一般化 信号(编程语言) 软件部署 深度学习 机器学习 最大化 模式识别(心理学) 工程类 数学分析 数学 微观经济学 电气工程 经济 程序设计语言 操作系统
作者
Yan Liu,Along Yu,Leye Wang,Bin Guo,Yang Li,Enze Yi,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (4): 1-29 被引量:4
标识
DOI:10.1145/3631429
摘要

In recent years, considerable endeavors have been devoted to exploring Wi-Fi-based sensing technologies by modeling the intricate mapping between received signals and corresponding human activities. However, the inherent complexity of Wi-Fi signals poses significant challenges for practical applications due to their pronounced susceptibility to deployment environments. To address this challenge, we delve into the distinctive characteristics of Wi-Fi signals and distill three pivotal factors that can be leveraged to enhance generalization capabilities of deep learning-based Wi-Fi sensing models: 1) effectively capture valuable input to mitigate the adverse impact of noisy measurements; 2) adaptively fuse complementary information from multiple Wi-Fi devices to boost the distinguishability of signal patterns associated with different activities; 3) extract generalizable features that can overcome the inconsistent representations of activities under different environmental conditions (e.g., locations, orientations). Leveraging these insights, we design a novel and unified sensing framework based on Wi-Fi signals, dubbed UniFi, and use gesture recognition as an application to demonstrate its effectiveness. UniFi achieves robust and generalizable gesture recognition in real-world scenarios by extracting discriminative and consistent features unrelated to environmental factors from pre-denoised signals collected by multiple transceivers. To achieve this, we first introduce an effective signal preprocessing approach that captures the applicable input data from noisy received signals for the deep learning model. Second, we propose a multi-view deep network based on spatio-temporal cross-view attention that integrates multi-carrier and multi-device signals to extract distinguishable information. Finally, we present the mutual information maximization as a regularizer to learn environment-invariant representations via contrastive loss without requiring access to any signals from unseen environments for practical adaptation. Extensive experiments on the Widar 3.0 dataset demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in different settings (99% and 90%-98% accuracy for in-domain and cross-domain recognition without additional data collection and model training).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助zmy采纳,获得10
刚刚
科研通AI2S应助乔小治采纳,获得30
刚刚
Ava应助red采纳,获得10
1秒前
2秒前
3秒前
RebeccaHe应助栗子的小母牛采纳,获得10
4秒前
QDU应助栗子的小母牛采纳,获得10
4秒前
慕容冷之完成签到,获得积分10
4秒前
灿烂完成签到,获得积分10
4秒前
Wendy完成签到,获得积分10
5秒前
奋斗若风发布了新的文献求助10
5秒前
5秒前
李建勋完成签到 ,获得积分10
5秒前
科研达人完成签到,获得积分10
5秒前
xsf完成签到,获得积分10
6秒前
三七完成签到,获得积分10
6秒前
友00000完成签到 ,获得积分10
6秒前
hhh完成签到,获得积分20
7秒前
kk发布了新的文献求助10
7秒前
berkelerey12138完成签到,获得积分10
7秒前
8秒前
lxrong完成签到,获得积分10
8秒前
a小木头完成签到,获得积分10
8秒前
Akim应助frederick采纳,获得10
8秒前
zmy完成签到,获得积分10
9秒前
Mm完成签到,获得积分10
9秒前
兔子加油冲完成签到,获得积分10
9秒前
狂飙的小蜗牛完成签到,获得积分10
9秒前
只要平凡完成签到 ,获得积分10
9秒前
丘比特应助灿烂采纳,获得10
9秒前
甜美的瑾瑜完成签到,获得积分10
9秒前
重生之我怎么变院士了完成签到 ,获得积分10
10秒前
李婷婷完成签到,获得积分10
10秒前
10秒前
爱笑的无心完成签到 ,获得积分10
10秒前
lalala完成签到 ,获得积分10
11秒前
bkagyin应助sxqt采纳,获得10
11秒前
无聊的听寒完成签到 ,获得积分10
11秒前
NZH完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297