材料科学
反铁电性
热传导
铁电性
声子
纳秒
散射
互易晶格
凝聚态物理
外延
薄膜
相变
光电子学
纳米技术
光学
物理
衍射
电介质
激光器
复合材料
图层(电子)
作者
Chenhan Liu,Yangyang Si,H G Zhang,Chao Wu,Shiqing Deng,Yongqi Dong,Y Li,Meng Zhang,Ningbo Fan,Bin Xu,Ping Lu,Lifa Zhang,Xi Lin,Xingjun Liu,Juekuan Yang,Zhenlin Luo,Sujit Das,L. Bellaïche,Yunfei Chen,Zuhuang Chen
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-12-15
卷期号:382 (6676): 1265-1269
被引量:7
标识
DOI:10.1126/science.adj9669
摘要
Effective control of heat transfer is vital for energy saving and carbon emission reduction. In contrast to achievements in electrical conduction, active control of heat transfer is much more challenging. Ferroelectrics are promising candidates for thermal switching as a result of their tunable domain structures. However, switching ratios in ferroelectrics are low (<1.2). We report that high-quality antiferroelectric PbZrO 3 epitaxial thin films exhibit high-contrast (>2.2), fast-speed (<150 nanoseconds), and long-lifetime (>10 7 ) thermal switching under a small voltage (<10 V). In situ reciprocal space mapping and atomistic modelings reveal that the field-driven antiferroelectric-ferroelectric phase transition induces a substantial change of primitive cell size, which modulates phonon-phonon scattering phase space drastically and results in high switching ratio. These results advance the concept of thermal transport control in ferroic materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI