亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based water quality prediction using octennial in-situ Daphnia magna biological early warning system data

水质 水蚤 大型水蚤 环境科学 预警系统 机器学习 人工智能 预测建模 计算机科学 生态学 生物 化学 毒性 电信 甲壳动物 有机化学
作者
Heewon Jeong,Sanghyun Park,Byeongwook Choi,Chung Seok Yu,Ji Young Hong,Tae‐Yong Jeong,Kyung Hwa Cho
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:465: 133196-133196 被引量:16
标识
DOI:10.1016/j.jhazmat.2023.133196
摘要

Biological early warning system (BEWS) has been globally used for surface water quality monitoring. Despite its extensive use, BEWS has exhibited limitations, including difficulties in biological interpretation and low alarm reproducibility. This study addressed these issues by applying machine learning (ML) models to eight years of in-situ BEWS data for Daphnia magna. Six ML models were adopted to predict contamination alarms from Daphnia behavioral parameters. The light gradient boosting machine model demonstrated the most significant improvement in predicting alarms from Daphnia behaviors. Compared with the traditional BEWS alarm index, the ML model enhanced the precision and recall by 29.50% and 43.41%, respectively. The speed distribution index and swimming speed were significant parameters for predicting water quality warnings. The nonlinear relationships between the monitored Daphnia behaviors and water physicochemical water quality parameters (i.e., flow rate, Chlorophyll-a concentration, water temperature, and conductivity) were identified by ML models for simulating Daphnia behavior based on the water contaminants. These findings suggest that ML models have the potential to establish a robust framework for advancing the predictive capabilities of BEWS, providing a promising avenue for real-time and accurate assessment of water quality. Thereby, it can contribute to more proactive and effective water quality management strategies. Daphnia biological early warning system (BEWS) was utilized for promptly detecting contaminants within rivers. However, there was not a scientific report focusing on machine learning (ML) models aimed at enhancing the accuracy of detecting the pollutants that contributed mostly to observed pollution alerts in rivers. In this study, we successfully developed ML models by utilizing long-term field data to improve the predictability and applicability of BEWS. The results of our modeling efforts provided an interpretative understanding of the intricate relationship between Daphnia behaviors and pollutants, thereby offering valuable insights to the scientific community involved in the research of BEWS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毓雅完成签到,获得积分10
3秒前
科研通AI40应助知识是芝士采纳,获得10
16秒前
小王完成签到 ,获得积分10
28秒前
善学以致用应助wk采纳,获得10
29秒前
FF完成签到,获得积分10
52秒前
53秒前
浦肯野应助VDC采纳,获得30
55秒前
1分钟前
李爱国应助Ade阿德采纳,获得10
1分钟前
1分钟前
1分钟前
Ade阿德发布了新的文献求助10
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
英姑应助阿靖采纳,获得10
1分钟前
lalalatiancai发布了新的文献求助10
2分钟前
领导范儿应助xuzb采纳,获得10
2分钟前
林非鹿完成签到,获得积分10
2分钟前
CHINA_C13发布了新的文献求助10
2分钟前
404NotFOUND应助科研通管家采纳,获得10
2分钟前
大模型应助lalalatiancai采纳,获得10
3分钟前
3分钟前
lalalatiancai发布了新的文献求助10
3分钟前
天天快乐应助懵懂的怜南采纳,获得10
3分钟前
小蘑菇应助lalalatiancai采纳,获得10
3分钟前
科研通AI40应助Y-99采纳,获得10
3分钟前
3分钟前
Y-99发布了新的文献求助10
3分钟前
4分钟前
科研通AI40应助虚幻的不评采纳,获得10
4分钟前
lalalatiancai发布了新的文献求助10
4分钟前
舒服的觅夏完成签到,获得积分10
4分钟前
Y-99完成签到,获得积分10
4分钟前
4分钟前
大模型应助VDC采纳,获得10
4分钟前
4分钟前
404NotFOUND应助科研通管家采纳,获得10
4分钟前
404NotFOUND应助科研通管家采纳,获得10
4分钟前
404NotFOUND应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088179
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511785
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460