Design of Terahertz Metasurface Structures for Biosensing Applications Based on Deep Learning Methods

太赫兹辐射 生物传感器 计算机科学 纳米技术 深度学习 材料科学 电子工程 人工智能 光电子学 工程类
作者
Qixiang Zhao,Yanyan Liang,You Lv,Xiaofeng Li
标识
DOI:10.2139/ssrn.4756477
摘要

With the development of terahertz band applications, terahertz devices have also been extensively studied. Terahertz band biosensors are widely used in biomedical micro detection, but the problems of terahertz spectrum prediction and structural design are complex and time-consuming. This article proposes an efficient deep learning method to replace traditional electromagnetic simulation and apply it to the inverse design of terahertz metasurface biosensors. Deep learning is divided into two parts, forward design and inverse design. The forward design is composed of a feedforward neural network(FNN) that can quickly predict spectral response based on input structural parameters. The trained FNN provides a large number of training samples for inverse design. The inverse design includes feature transformer neural network(FTNN) and generator neural network(GNN), FTNN outputs spectral response based on input performance indicators, and GNN outputs geometric structural parameters based on input spectral response. This inverse design uses spectral response as an intermediate medium to achieve input performance indicators and output geometric structural parameters, enabling on-demand design of terahertz metasurface biosensors. The test results show that the proposed design scheme based on deep learning methods can output appropriate structural parameters according to the required frequency and bandwidth of the analyte. The output structural parameters were simulated and verified using electromagnetic simulation software, and the simulation results were consistent with the predicted results. This method of replacing electromagnetic simulation with neural networks can be applied to the spectral prediction and design problem research of terahertz devices, providing more possibilities for the future application of terahertz devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duan应助大方明杰采纳,获得10
刚刚
刚刚
1秒前
1秒前
快乐友灵发布了新的文献求助10
2秒前
本尼脸上褶子完成签到 ,获得积分10
3秒前
李健应助敏感草丛采纳,获得10
3秒前
虞美人发布了新的文献求助10
3秒前
桐桐应助sen123采纳,获得30
4秒前
5秒前
5秒前
5秒前
5秒前
猪猪hero发布了新的文献求助30
5秒前
6秒前
怡然酬海发布了新的文献求助10
7秒前
踏实天亦完成签到,获得积分10
7秒前
千寻发布了新的文献求助10
8秒前
8秒前
9秒前
东海帝皇发布了新的文献求助10
10秒前
ZZ发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
小二郎应助南风采纳,获得10
13秒前
科研通AI5应助ohh采纳,获得10
13秒前
蒙圈完成签到,获得积分10
14秒前
科研通AI5应助Jtiger采纳,获得10
14秒前
wanci应助小丽酱采纳,获得10
14秒前
15秒前
16秒前
George关注了科研通微信公众号
16秒前
17秒前
敏感草丛发布了新的文献求助10
17秒前
18秒前
dch发布了新的文献求助10
18秒前
Ler发布了新的文献求助10
18秒前
211完成签到 ,获得积分10
18秒前
加肥猫1992完成签到,获得积分10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490203
求助须知:如何正确求助?哪些是违规求助? 3077204
关于积分的说明 9148048
捐赠科研通 2769368
什么是DOI,文献DOI怎么找? 1519705
邀请新用户注册赠送积分活动 704187
科研通“疑难数据库(出版商)”最低求助积分说明 702113