Nitrogen-doped carbon nanofiber loaded MOF-derived NiCo bimetallic nanoparticles accelerate the redox transformation of polysulfide for lithium- sulfur batteries

化学 多硫化物 双金属片 氧化还原 锂(药物) 硫黄 无机化学 纳米颗粒 碳纤维 电化学 纳米纤维 碳纳米纤维 化学工程 纳米技术 电极 金属 电解质 有机化学 催化作用 医学 材料科学 物理化学 工程类 复合数 复合材料 内分泌学
作者
Zeping Wang,Chengxin Liu,Yangyang Wang,Shengqiang Zhang,Miao Huang,Jinbo Bai,Hui Wang,Xiaojie Liu
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:959: 118185-118185 被引量:4
标识
DOI:10.1016/j.jelechem.2024.118185
摘要

In the electrochemical study of lithium-sulfur (Li-S) batteries, the slow kinetics of the sulfur reduction reaction (SRR) leading to severe shuttle effect of polysulfides remains a major challenge. Catalysts with bimetallic nanoparticles have higher adsorption affinity for lithium polysulfides and hold great potential in improving reaction kinetics. In this study, a nitrogen-doped carbon nanofiber carrier was prepared using high-voltage electrospinning technology, and through in-situ growth and high-temperature pyrolysis process, the carrier material was uniformly loaded with active sites of NiCo bimetallic nanoparticles derived from Metal-organic framework (MOF), aiming to improve the kinetics of sulfur oxidation and reduction and reduce the severe shuttle effect of soluble polysulfides. At the same time, polymethyl methacrylate was added to adjust the pore structure of the carbon nanofibers to form an ideal independent sulfur cathode porous conductive carbon network for rapid ion transport to prevent Li2S deposition and alleviate the volume change during lithiation/delithiation process. Experimental results show that the synergistic catalytic effect of bimetallic nanoparticles can not only rapidly anchor lithium polysulfides throughout the entire reaction process of Li-S batteries, but also reduce the resistance during the reaction process, accelerating the conversion of lithium polysulfides to Li2S deposition. It demonstrates outstanding electrochemical performance, with a first-cycle discharge specific capacity as high as 1431.7 mAh g−1 at a 0.2 C rate, and a Coulombic efficiency of 96 %. After 500 cycles, its capacity still maintains at 628.5 mAh g−1, with a decay rate of only 0.11 % per cycle. This study provides a feasible insight into the synergistic catalysis of MOF-derived metal nanoparticles, which has important guiding significance and potential impact on the catalysis of Li-S batteries by bimetallic nanoparticles with an independent sulfur cathode structure, and is expected to accelerate the industrialization process of Li-S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晨曦给晨曦的求助进行了留言
2秒前
顺利的乐枫完成签到 ,获得积分10
4秒前
媛LZ应助shutup采纳,获得10
9秒前
11秒前
烤鸭本鸭完成签到,获得积分10
13秒前
13秒前
18秒前
Yy关闭了Yy文献求助
19秒前
Tsang完成签到,获得积分10
20秒前
Owen应助炙热千柳采纳,获得10
20秒前
奋斗的钥匙完成签到,获得积分10
22秒前
孟筱完成签到 ,获得积分10
27秒前
七七完成签到 ,获得积分10
28秒前
28秒前
123沙发布了新的文献求助10
29秒前
英俊的铭应助奋斗的钥匙采纳,获得10
29秒前
orixero应助Summer采纳,获得10
31秒前
刻苦的幻巧完成签到 ,获得积分10
31秒前
Mint发布了新的文献求助10
33秒前
Ovo发布了新的文献求助10
33秒前
34秒前
39秒前
桐桐应助zxy采纳,获得10
42秒前
打打应助123沙采纳,获得10
42秒前
跑得快的蜗牛完成签到,获得积分10
42秒前
石火发布了新的文献求助10
44秒前
笑哈哈完成签到,获得积分10
44秒前
45秒前
45秒前
我的口袋里没有钱完成签到,获得积分10
46秒前
47秒前
annafan应助狂野的寻凝采纳,获得10
47秒前
momo完成签到,获得积分10
47秒前
852应助Ovo采纳,获得10
47秒前
天地侵略者完成签到,获得积分10
49秒前
Foremelon完成签到,获得积分10
50秒前
50秒前
爆米花应助深海鱼采纳,获得10
52秒前
ycy发布了新的文献求助10
55秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416214
求助须知:如何正确求助?哪些是违规求助? 3017901
关于积分的说明 8883001
捐赠科研通 2705481
什么是DOI,文献DOI怎么找? 1483630
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680897