A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks

计算机科学 强化学习 人工智能 证券交易所 机器学习 梯度升压 多层感知器 深度学习 股票市场指数 Boosting(机器学习) 股票市场 人工神经网络 财务 随机森林 生物 古生物学 经济
作者
Jie Zou,Jiashu Lou,Baohua Wang,Sixue Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122801-122801 被引量:13
标识
DOI:10.1016/j.eswa.2023.122801
摘要

Deep Reinforcement Learning (DRL) algorithms have been increasingly used to construct stock trading strategies, but they often face performance challenges when applied to financial data with low signal-to-noise ratios and unevenness, as these methods were originally designed for the gaming community. To address this issue, we propose a DRL-based stock trading system that leverages Cascaded Long Short-Term Memory (CLSTM-PPO Model) to capture the hidden information in the daily stock data. Our model adopts a cascaded structure with two stages of carefully designed deep LSTM networks: it uses one LSTM to extract the time-series features from a sequence of daily stock data in the first stage, and then the features extracted are fed to the agent in the reinforcement learning algorithm for training, while the actor and the critic in the agent also use a LSTM network. We conduct experiments on stock market datasets from four major indices: the Dow Jones Industrial index (DJI) in the US, the Shanghai Stock Exchange 50 (SSE50) in China, S&P BSE Sensex Index (SENSEX) in India, and the Financial Times Stock Exchange 100 (FTSE100) in the UK. We compare our model with several benchmark models, including: (i) a model based on a buy-and-hold strategy; (ii) a Proximal Policy Optimization (PPO) model with Multilayer Perceptron (MLP) policy; (iii) some up-to-date models like the MLP model, LSTM model, Light Gradient Boosting Machine (LGBM) model, and histogram-based gradient boosting model; and (iv) an ensemble strategy model. The experimental results show that our model outperforms the baseline models in several key metrics, such as cumulative returns, maximum earning rate, and average profitability per trade. The improvements range from 5% to 52%, depending on the metric and the stock index. This indicates that our proposed method is a promising way to build an automated stock trading system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助背后如雪采纳,获得10
刚刚
轻松板栗发布了新的文献求助10
刚刚
小叶完成签到,获得积分10
刚刚
鲸鱼发布了新的文献求助10
刚刚
OrangeBlueHeart完成签到,获得积分10
1秒前
次我完成签到,获得积分10
1秒前
1秒前
kirakira完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
2秒前
吴某完成签到,获得积分20
3秒前
慕青应助皮蛋solo粥采纳,获得30
3秒前
发论文完成签到 ,获得积分10
3秒前
南松发布了新的文献求助10
3秒前
3秒前
Rubby应助dfsdf采纳,获得10
3秒前
小明应助dfsdf采纳,获得10
3秒前
李健的小迷弟应助PaoPao采纳,获得10
4秒前
4秒前
CipherSage应助wzl采纳,获得10
4秒前
小巧风华发布了新的文献求助10
4秒前
反方向的钟完成签到,获得积分10
5秒前
5秒前
5秒前
香妃发布了新的文献求助10
6秒前
lxyy应助迷你的依凝采纳,获得10
6秒前
7秒前
7秒前
fazat完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
糊涂涂发布了新的文献求助30
9秒前
9秒前
9秒前
狗东西发布了新的文献求助10
9秒前
科研工具人完成签到,获得积分10
10秒前
yulia发布了新的文献求助20
10秒前
10秒前
bkagyin应助小巧风华采纳,获得10
10秒前
whutyoyo完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403