亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks

计算机科学 强化学习 人工智能 证券交易所 机器学习 梯度升压 多层感知器 深度学习 股票市场指数 Boosting(机器学习) 股票市场 人工神经网络 财务 随机森林 古生物学 经济 生物
作者
Jie Zou,Jiashu Lou,Baohua Wang,Sixue Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122801-122801 被引量:13
标识
DOI:10.1016/j.eswa.2023.122801
摘要

Deep Reinforcement Learning (DRL) algorithms have been increasingly used to construct stock trading strategies, but they often face performance challenges when applied to financial data with low signal-to-noise ratios and unevenness, as these methods were originally designed for the gaming community. To address this issue, we propose a DRL-based stock trading system that leverages Cascaded Long Short-Term Memory (CLSTM-PPO Model) to capture the hidden information in the daily stock data. Our model adopts a cascaded structure with two stages of carefully designed deep LSTM networks: it uses one LSTM to extract the time-series features from a sequence of daily stock data in the first stage, and then the features extracted are fed to the agent in the reinforcement learning algorithm for training, while the actor and the critic in the agent also use a LSTM network. We conduct experiments on stock market datasets from four major indices: the Dow Jones Industrial index (DJI) in the US, the Shanghai Stock Exchange 50 (SSE50) in China, S&P BSE Sensex Index (SENSEX) in India, and the Financial Times Stock Exchange 100 (FTSE100) in the UK. We compare our model with several benchmark models, including: (i) a model based on a buy-and-hold strategy; (ii) a Proximal Policy Optimization (PPO) model with Multilayer Perceptron (MLP) policy; (iii) some up-to-date models like the MLP model, LSTM model, Light Gradient Boosting Machine (LGBM) model, and histogram-based gradient boosting model; and (iv) an ensemble strategy model. The experimental results show that our model outperforms the baseline models in several key metrics, such as cumulative returns, maximum earning rate, and average profitability per trade. The improvements range from 5% to 52%, depending on the metric and the stock index. This indicates that our proposed method is a promising way to build an automated stock trading system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋丽薇完成签到,获得积分10
38秒前
1分钟前
mysilicon发布了新的文献求助10
1分钟前
丁静完成签到 ,获得积分10
1分钟前
1分钟前
mysilicon关注了科研通微信公众号
2分钟前
Nan发布了新的文献求助30
2分钟前
研友_ZA2B68完成签到,获得积分10
3分钟前
3分钟前
fffccclll完成签到,获得积分10
4分钟前
4分钟前
oywt发布了新的文献求助10
4分钟前
彭于晏应助tbb采纳,获得10
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
4分钟前
moyueeer发布了新的文献求助10
4分钟前
moyueeer完成签到 ,获得积分10
5分钟前
狄安娜GoGo发布了新的文献求助10
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
852应助科研通管家采纳,获得10
6分钟前
Aaernan完成签到 ,获得积分10
7分钟前
30完成签到,获得积分10
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
8分钟前
jy发布了新的文献求助10
8分钟前
闪闪蜜粉完成签到 ,获得积分10
8分钟前
科研通AI5应助彩色傲柏采纳,获得10
8分钟前
8分钟前
彩色傲柏发布了新的文献求助10
8分钟前
8分钟前
狄安娜GoGo完成签到,获得积分10
8分钟前
tbb发布了新的文献求助10
8分钟前
jy关注了科研通微信公众号
9分钟前
霍夫曼降解完成签到,获得积分10
10分钟前
10分钟前
10分钟前
Owen应助科研通管家采纳,获得10
10分钟前
tian发布了新的文献求助10
10分钟前
激动的晓筠完成签到 ,获得积分10
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280611
关于积分的说明 10020100
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648