A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks

计算机科学 强化学习 人工智能 证券交易所 机器学习 梯度升压 多层感知器 深度学习 股票市场指数 Boosting(机器学习) 股票市场 人工神经网络 财务 随机森林 生物 古生物学 经济
作者
Jie Zou,Jiashu Lou,Baohua Wang,Sixue Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122801-122801 被引量:13
标识
DOI:10.1016/j.eswa.2023.122801
摘要

Deep Reinforcement Learning (DRL) algorithms have been increasingly used to construct stock trading strategies, but they often face performance challenges when applied to financial data with low signal-to-noise ratios and unevenness, as these methods were originally designed for the gaming community. To address this issue, we propose a DRL-based stock trading system that leverages Cascaded Long Short-Term Memory (CLSTM-PPO Model) to capture the hidden information in the daily stock data. Our model adopts a cascaded structure with two stages of carefully designed deep LSTM networks: it uses one LSTM to extract the time-series features from a sequence of daily stock data in the first stage, and then the features extracted are fed to the agent in the reinforcement learning algorithm for training, while the actor and the critic in the agent also use a LSTM network. We conduct experiments on stock market datasets from four major indices: the Dow Jones Industrial index (DJI) in the US, the Shanghai Stock Exchange 50 (SSE50) in China, S&P BSE Sensex Index (SENSEX) in India, and the Financial Times Stock Exchange 100 (FTSE100) in the UK. We compare our model with several benchmark models, including: (i) a model based on a buy-and-hold strategy; (ii) a Proximal Policy Optimization (PPO) model with Multilayer Perceptron (MLP) policy; (iii) some up-to-date models like the MLP model, LSTM model, Light Gradient Boosting Machine (LGBM) model, and histogram-based gradient boosting model; and (iv) an ensemble strategy model. The experimental results show that our model outperforms the baseline models in several key metrics, such as cumulative returns, maximum earning rate, and average profitability per trade. The improvements range from 5% to 52%, depending on the metric and the stock index. This indicates that our proposed method is a promising way to build an automated stock trading system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
大意的星星完成签到,获得积分10
4秒前
愉快的孤容完成签到,获得积分10
6秒前
6秒前
阳佟水蓉完成签到,获得积分10
6秒前
充电宝应助123采纳,获得10
8秒前
杨迪完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
9秒前
9秒前
wp发布了新的文献求助10
9秒前
13秒前
hyhyhyhy发布了新的文献求助10
13秒前
LL完成签到,获得积分10
17秒前
JamesPei应助hyhyhyhy采纳,获得10
18秒前
18秒前
tang完成签到,获得积分10
19秒前
19秒前
如意厉完成签到,获得积分10
20秒前
1029zx完成签到,获得积分10
21秒前
xiaoming777完成签到,获得积分10
21秒前
Leo完成签到 ,获得积分10
23秒前
snai1发布了新的文献求助10
23秒前
慕青应助碧蓝的幻悲采纳,获得30
26秒前
HgPP完成签到 ,获得积分10
27秒前
Ankher完成签到,获得积分10
27秒前
田様应助猪头采纳,获得10
29秒前
董H完成签到,获得积分10
29秒前
wp完成签到,获得积分10
29秒前
30秒前
潇洒的灵萱完成签到,获得积分10
30秒前
SciGPT应助清酒采纳,获得10
31秒前
Manzia完成签到,获得积分10
31秒前
32秒前
听风轻语完成签到,获得积分10
33秒前
小刘发布了新的文献求助10
34秒前
CipherSage应助乌拉挂机采纳,获得10
35秒前
35秒前
李敏之发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088