Enhancing heart disease prediction using a self-attention-based transformer model

可解释性 计算机科学 人工智能 机器学习 变压器 水准点(测量) 医学诊断 心力衰竭 数据挖掘 医学 内科学 物理 大地测量学 病理 量子力学 电压 地理
作者
Atta Rahman,Yousef Alsenani,Adeel Zafar,Kalim Ullah,Khaled M. Rabie,Thokozani Shongwe
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:25
标识
DOI:10.1038/s41598-024-51184-7
摘要

Abstract Cardiovascular diseases (CVDs) continue to be the leading cause of more than 17 million mortalities worldwide. The early detection of heart failure with high accuracy is crucial for clinical trials and therapy. Patients will be categorized into various types of heart disease based on characteristics like blood pressure, cholesterol levels, heart rate, and other characteristics. With the use of an automatic system, we can provide early diagnoses for those who are prone to heart failure by analyzing their characteristics. In this work, we deploy a novel self-attention-based transformer model, that combines self-attention mechanisms and transformer networks to predict CVD risk. The self-attention layers capture contextual information and generate representations that effectively model complex patterns in the data. Self-attention mechanisms provide interpretability by giving each component of the input sequence a certain amount of attention weight. This includes adjusting the input and output layers, incorporating more layers, and modifying the attention processes to collect relevant information. This also makes it possible for physicians to comprehend which features of the data contributed to the model's predictions. The proposed model is tested on the Cleveland dataset, a benchmark dataset of the University of California Irvine (UCI) machine learning (ML) repository. Comparing the proposed model to several baseline approaches, we achieved the highest accuracy of 96.51%. Furthermore, the outcomes of our experiments demonstrate that the prediction rate of our model is higher than that of other cutting-edge approaches used for heart disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peterlee完成签到,获得积分10
1秒前
guoguo完成签到,获得积分10
1秒前
荔枝发布了新的文献求助10
2秒前
echo发布了新的文献求助10
2秒前
张小小发布了新的文献求助10
3秒前
Lin完成签到,获得积分10
3秒前
5秒前
王辰睿发布了新的文献求助10
5秒前
研友_VZG7GZ应助hinatazaka46采纳,获得10
5秒前
在水一方应助奥利锋采纳,获得10
7秒前
echo完成签到,获得积分10
7秒前
Michael完成签到,获得积分10
7秒前
搜集达人应助xzy采纳,获得10
8秒前
试尝胆大发布了新的文献求助30
8秒前
蒸馏水发布了新的文献求助10
9秒前
9秒前
小二郎应助曾经的访风采纳,获得10
10秒前
齐百七完成签到,获得积分10
10秒前
yy完成签到,获得积分10
11秒前
capx完成签到,获得积分10
12秒前
月明星稀发布了新的文献求助10
12秒前
psydaodao发布了新的文献求助30
13秒前
刘博龙关注了科研通微信公众号
14秒前
Jasper应助cavendipeng采纳,获得20
15秒前
打打应助江江小菜鸡采纳,获得10
15秒前
16秒前
17秒前
18秒前
lzt完成签到 ,获得积分10
18秒前
月亮酒完成签到,获得积分10
19秒前
奥利锋发布了新的文献求助10
19秒前
justin完成签到,获得积分10
19秒前
宁宁完成签到,获得积分10
19秒前
reck发布了新的文献求助10
19秒前
123发布了新的文献求助100
20秒前
小卡完成签到 ,获得积分10
20秒前
过时的热狗完成签到,获得积分10
22秒前
ldgsd完成签到,获得积分10
22秒前
lzk完成签到,获得积分10
22秒前
Drogoo发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463