AGRICULTURAL UAV CROP SPRAYING PATH PLANNING BASED ON PSO-A* ALGORITHM

粒子群优化 障碍物 运动规划 初始化 人口 农业 计算机科学 过程(计算) 数学优化 算法 农业工程 工程类 数学 人工智能 地理 人口学 考古 社会学 机器人 程序设计语言 操作系统
作者
Lijuan FAN
出处
期刊:INMATEH-Agricultural Engineering [R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest]
卷期号:: 625-636 被引量:5
标识
DOI:10.35633/inmateh-71-54
摘要

Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
1秒前
LDoll发布了新的文献求助10
6秒前
du完成签到 ,获得积分10
6秒前
7秒前
12秒前
Orange应助xuan采纳,获得10
13秒前
nmeiko完成签到,获得积分20
16秒前
xzgwbh完成签到,获得积分10
16秒前
科目三应助LDoll采纳,获得10
16秒前
18秒前
18秒前
浮游应助yiqi采纳,获得10
18秒前
wubinbin完成签到 ,获得积分10
18秒前
hjjjxxxx发布了新的文献求助30
21秒前
22秒前
不能吃了发布了新的文献求助10
22秒前
xuan发布了新的文献求助10
25秒前
hjjjxxxx完成签到,获得积分10
29秒前
nmeiko发布了新的文献求助10
30秒前
34秒前
山屿发布了新的文献求助30
36秒前
科研顺发布了新的文献求助10
39秒前
AIDIN完成签到 ,获得积分10
39秒前
45秒前
ding应助Bismarck采纳,获得10
49秒前
49秒前
50秒前
53秒前
科研顺完成签到,获得积分10
54秒前
55秒前
56秒前
56秒前
LDoll发布了新的文献求助10
59秒前
二猫发布了新的文献求助10
59秒前
win完成签到 ,获得积分10
59秒前
Bismarck发布了新的文献求助10
1分钟前
二猫完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助Bismarck采纳,获得10
1分钟前
风花雪月发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538