亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AGRICULTURAL UAV CROP SPRAYING PATH PLANNING BASED ON PSO-A* ALGORITHM

粒子群优化 障碍物 运动规划 初始化 人口 农业 计算机科学 过程(计算) 数学优化 算法 农业工程 工程类 数学 人工智能 地理 人口学 考古 社会学 机器人 程序设计语言 操作系统
作者
Lijuan FAN
出处
期刊:INMATEH-Agricultural Engineering [R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest]
卷期号:: 625-636 被引量:5
标识
DOI:10.35633/inmateh-71-54
摘要

Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
顾矜应助科研通管家采纳,获得20
24秒前
jarrykim完成签到,获得积分10
39秒前
40秒前
上官若男应助LukeLion采纳,获得10
45秒前
所所应助轻松一曲采纳,获得10
52秒前
每㐬山风完成签到 ,获得积分10
58秒前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
微醺潮汐发布了新的文献求助10
1分钟前
852应助dbyy采纳,获得10
1分钟前
灯光师完成签到,获得积分10
1分钟前
1分钟前
1分钟前
轻松一曲发布了新的文献求助10
1分钟前
轻松一曲完成签到,获得积分10
1分钟前
动听的又亦完成签到 ,获得积分10
2分钟前
2分钟前
du关闭了du文献求助
2分钟前
答辩完成签到 ,获得积分10
2分钟前
2分钟前
领导范儿应助LiuHD采纳,获得10
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
科目三应助zhang采纳,获得10
2分钟前
2分钟前
xaopng完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
dbyy发布了新的文献求助10
3分钟前
zhang发布了新的文献求助10
3分钟前
3分钟前
LukeLion发布了新的文献求助10
3分钟前
zhang关注了科研通微信公众号
3分钟前
MOLV应助柚子想吃橘子采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224