AGRICULTURAL UAV CROP SPRAYING PATH PLANNING BASED ON PSO-A* ALGORITHM

粒子群优化 障碍物 运动规划 初始化 人口 农业 计算机科学 过程(计算) 数学优化 算法 农业工程 工程类 数学 人工智能 地理 机器人 操作系统 社会学 人口学 考古 程序设计语言
作者
Lijuan FAN
出处
期刊:INMATEH-Agricultural Engineering [R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest]
卷期号:: 625-636 被引量:5
标识
DOI:10.35633/inmateh-71-54
摘要

Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马研究生完成签到,获得积分10
刚刚
刚刚
曾经书翠完成签到,获得积分20
1秒前
烟花应助小郑开心努力采纳,获得10
2秒前
2秒前
微笑立轩完成签到,获得积分10
3秒前
SWZ发布了新的文献求助100
3秒前
6秒前
方远锋完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
发发发完成签到 ,获得积分10
9秒前
今后应助SJ_Wang采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
斯文的飞雪完成签到,获得积分10
11秒前
啊啊发布了新的文献求助10
11秒前
SCI发发发发布了新的文献求助10
12秒前
徐徐完成签到,获得积分10
13秒前
13秒前
阿洁发布了新的文献求助10
13秒前
执着雪青应助海拾月采纳,获得10
13秒前
h123123发布了新的文献求助10
14秒前
情怀应助学术蟑螂采纳,获得10
15秒前
15秒前
研友_enP05n发布了新的文献求助10
16秒前
昀松完成签到,获得积分10
17秒前
onlyan发布了新的文献求助20
18秒前
络梦摘星辰完成签到,获得积分10
19秒前
memedaaaah发布了新的文献求助10
20秒前
7777完成签到,获得积分10
20秒前
阔达忆秋完成签到 ,获得积分10
21秒前
明天完成签到,获得积分10
22秒前
了了完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
耿耿星河完成签到,获得积分10
26秒前
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019