Computation Offloading and Trajectory Planning of Multi-UAV-Enabled MEC: A Knowledge-Assisted Multiagent Reinforcement Learning Approach

计算机科学 计算卸载 移动边缘计算 强化学习 边缘计算 马尔可夫决策过程 分布式计算 服务器 云计算 灵活性(工程) 边缘设备 软件部署 GSM演进的增强数据速率 计算机网络 马尔可夫过程 人工智能 操作系统 统计 数学
作者
Xulong Li,Yunhui Qin,Jiahao Huo,Wei Huangfu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 7077-7088 被引量:4
标识
DOI:10.1109/tvt.2023.3338612
摘要

Compared with centralized cloud computing, mobile edge computing (MEC) enables Internet of Things (IoT) devices to offload computation-intensive tasks to the edge of the network closer to them for processing, which can effectively save energy consumption of IoT devices and alleviate network congestion and high latency problems. However, the traditional terrestrial MEC system cannot adapt to scenarios such as rapid network recovery after disasters and emergency rescue due to its poor flexibility and high deployment cost, and assembling edge servers to unmanned aerial vehicles (UAVs) to assist in rapidly building mobile edge networks is a feasible solution. Therefore, this paper considers a multi-UAV-enabled MEC network with the optimization objectives of maximizing the processing success rate of computational tasks and fairness of system, while minimizing the processing delay of computational tasks. We investigate the computation offloading problem and the trajectory planning problem from the perspectives of IoT devices and UAVs, respectively. Then model them as Markov decision processes (MDPs) and propose a joint optimization scheme based on expert knowledge-assisted multi-agent reinforcement learning algorithms. Simulation results show that the proposed algorithm has significant advantages over baseline algorithms in terms of processing success rate and delay of computational tasks as well as fairness of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling发布了新的文献求助10
1秒前
gxl完成签到,获得积分10
1秒前
Lucas应助头头啊头头啊采纳,获得10
1秒前
李健的粉丝团团长应助hh采纳,获得10
2秒前
等待的问夏完成签到 ,获得积分10
2秒前
2秒前
qyy发布了新的文献求助10
3秒前
marksman完成签到,获得积分10
3秒前
羊羊完成签到,获得积分10
3秒前
五氧化二磷完成签到,获得积分10
3秒前
3秒前
科研通AI5应助自信猕猴桃采纳,获得10
4秒前
4秒前
4秒前
笑点低易真完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
Rocky发布了新的文献求助10
8秒前
追梦路上的晓邢完成签到,获得积分10
8秒前
小蘑菇应助鲤鱼寒荷采纳,获得10
10秒前
SimonShaw发布了新的文献求助10
10秒前
11秒前
12秒前
小二郎应助小勾采纳,获得10
13秒前
英勇自行车完成签到,获得积分10
15秒前
Wunrry完成签到 ,获得积分10
15秒前
16秒前
哈哈完成签到,获得积分10
16秒前
vkqing发布了新的文献求助10
17秒前
ww发布了新的文献求助10
17秒前
活泼的花生完成签到,获得积分10
18秒前
20秒前
20秒前
天青色等烟雨完成签到 ,获得积分10
21秒前
21秒前
21秒前
今后应助ww采纳,获得10
23秒前
23秒前
迟大猫应助xuliang采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696269
求助须知:如何正确求助?哪些是违规求助? 3248206
关于积分的说明 9856543
捐赠科研通 2959728
什么是DOI,文献DOI怎么找? 1622845
邀请新用户注册赠送积分活动 768294
科研通“疑难数据库(出版商)”最低求助积分说明 741455