亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3MO Multimodal data fusion for improved risk stratification of breast cancer with multi-task 3D deep learning model: A multicenter study

医学 危险分层 乳腺癌 分层(种子) 人工智能 肿瘤科 内科学 癌症 计算机科学 休眠 植物 生物 种子休眠 发芽
作者
Weilong Ren,Y.H. Yu,Wenhao Ouyang,Luhui Mao,Qin Yao,Yongtao Tan,Zhiwei He,Tao Li,Zhe Zhang,Jinfeng Wang,Herui Yao
出处
期刊:Annals of Oncology [Elsevier]
卷期号:34: S1469-S1469 被引量:1
标识
DOI:10.1016/j.annonc.2023.10.135
摘要

Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study aims to the amalgamation of artificial intelligence innovation and medical research by developing a novel multi-task 3D deep learning model with MRI-based multimodal data fusion. This pioneering multicenter study involves 1,244 non-metastatic breast cancer patients, who were assigned into the training cohort (n = 456), internal validation cohort (n = 113), external testing cohort 1 (n = 432), and external testing cohort 2 (n = 198). An innovative multimodal approach integrating clinicopathological data with deep learning MRI insights yielded the multi-task 3D deep learning model (3D-MMR-model), which was developed for tumor segmentation and disease-free survival (DFS) prediction. The efficacy was demonstrated through tumor segmentation accuracy metrics and DFS prediction AUC values. Visualization techniques provided insight into decision-making processes, correlating model predictions with the tumor microenvironment. The 3D-MMR-model demonstrated a high degree of predictive accuracy and significant boost for DFS. The AUC for 4-year DFS prediction escalated to 0.98, 0.97, 0.90, and 0.93 within the training cohort, internal validation cohort, external testing cohort 1, and external testing cohort 2, respectively. Our multimodal model showcased significant distinctions in DFS between patients with high versus low risk scores (All P < 0.001). Moreover, a decision curve analysis underscored that the multimodal model yielded a superior net benefit across a broad range of threshold probabilities within all cohorts, which implies the multimodal model adds substantial clinical value to early DFS prediction. Furthermore, patients in the high-risk group displayed concentrated hotspots in regions near or distant from the tumor and revealed an elevated presence of antigen-presenting cells. This study introduces a transformative approach to breast cancer prognosis, amalgamating imaging and clinical data for enhanced predictive accuracy, thus holding promise for personalized treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助ly采纳,获得10
7秒前
nito完成签到,获得积分10
7秒前
靓丽的悟空完成签到 ,获得积分10
10秒前
李煜琛完成签到 ,获得积分10
14秒前
nice完成签到 ,获得积分10
18秒前
117完成签到,获得积分10
19秒前
25秒前
26秒前
zhuangxx发布了新的文献求助10
29秒前
顾灵毓发布了新的文献求助10
30秒前
wangzheng完成签到,获得积分10
32秒前
Ava应助随便起一个昵称采纳,获得10
32秒前
35秒前
43秒前
zhuangxx完成签到,获得积分10
47秒前
50秒前
顾灵毓完成签到,获得积分10
57秒前
多喝水完成签到 ,获得积分10
1分钟前
碧蓝皮卡丘完成签到,获得积分10
1分钟前
时间煮雨我煮鱼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
粗暴的坤发布了新的文献求助10
1分钟前
雪白的听寒完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
健壮傲之发布了新的文献求助10
1分钟前
1分钟前
初见完成签到 ,获得积分10
1分钟前
117发布了新的文献求助10
1分钟前
缓慢向日葵完成签到,获得积分10
1分钟前
1分钟前
初晴完成签到 ,获得积分10
2分钟前
pryturk发布了新的文献求助10
2分钟前
共享精神应助pryturk采纳,获得10
2分钟前
研友_VZG7GZ应助阔达的寒松采纳,获得10
2分钟前
烟花应助SZU_Julian采纳,获得10
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788249
求助须知:如何正确求助?哪些是违规求助? 5705679
关于积分的说明 15473340
捐赠科研通 4916347
什么是DOI,文献DOI怎么找? 2646310
邀请新用户注册赠送积分活动 1593966
关于科研通互助平台的介绍 1548346