已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3MO Multimodal data fusion for improved risk stratification of breast cancer with multi-task 3D deep learning model: A multicenter study

医学 危险分层 乳腺癌 分层(种子) 人工智能 肿瘤科 内科学 癌症 计算机科学 休眠 植物 生物 种子休眠 发芽
作者
Weilong Ren,Y.H. Yu,Wenhao Ouyang,Luhui Mao,Qin Yao,Yongtao Tan,Zhiwei He,Tao Li,Zhe Zhang,Jinfeng Wang,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:34: S1469-S1469 被引量:1
标识
DOI:10.1016/j.annonc.2023.10.135
摘要

Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study aims to the amalgamation of artificial intelligence innovation and medical research by developing a novel multi-task 3D deep learning model with MRI-based multimodal data fusion. This pioneering multicenter study involves 1,244 non-metastatic breast cancer patients, who were assigned into the training cohort (n = 456), internal validation cohort (n = 113), external testing cohort 1 (n = 432), and external testing cohort 2 (n = 198). An innovative multimodal approach integrating clinicopathological data with deep learning MRI insights yielded the multi-task 3D deep learning model (3D-MMR-model), which was developed for tumor segmentation and disease-free survival (DFS) prediction. The efficacy was demonstrated through tumor segmentation accuracy metrics and DFS prediction AUC values. Visualization techniques provided insight into decision-making processes, correlating model predictions with the tumor microenvironment. The 3D-MMR-model demonstrated a high degree of predictive accuracy and significant boost for DFS. The AUC for 4-year DFS prediction escalated to 0.98, 0.97, 0.90, and 0.93 within the training cohort, internal validation cohort, external testing cohort 1, and external testing cohort 2, respectively. Our multimodal model showcased significant distinctions in DFS between patients with high versus low risk scores (All P < 0.001). Moreover, a decision curve analysis underscored that the multimodal model yielded a superior net benefit across a broad range of threshold probabilities within all cohorts, which implies the multimodal model adds substantial clinical value to early DFS prediction. Furthermore, patients in the high-risk group displayed concentrated hotspots in regions near or distant from the tumor and revealed an elevated presence of antigen-presenting cells. This study introduces a transformative approach to breast cancer prognosis, amalgamating imaging and clinical data for enhanced predictive accuracy, thus holding promise for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言辞完成签到,获得积分10
刚刚
1秒前
lingo完成签到 ,获得积分10
2秒前
Curtley发布了新的文献求助10
2秒前
B4完成签到,获得积分10
4秒前
VVV发布了新的文献求助10
9秒前
含糊的无声完成签到 ,获得积分10
10秒前
牛蛙丶丶完成签到,获得积分10
12秒前
大羊完成签到 ,获得积分10
13秒前
Xu完成签到 ,获得积分10
13秒前
诚心山芙发布了新的文献求助10
15秒前
Viiigo完成签到,获得积分10
16秒前
Aman完成签到,获得积分10
17秒前
20秒前
纯真沛儿发布了新的文献求助10
21秒前
烟花应助VVV采纳,获得10
22秒前
亭2007完成签到 ,获得积分10
24秒前
抹茶芝士酸奶完成签到,获得积分10
27秒前
欣慰的铭完成签到,获得积分20
28秒前
29秒前
29秒前
30秒前
伯云完成签到,获得积分10
31秒前
ling发布了新的文献求助10
34秒前
RR发布了新的文献求助10
34秒前
欣慰的铭发布了新的文献求助10
34秒前
冷静白亦完成签到,获得积分10
36秒前
灵梦柠檬酸完成签到,获得积分10
38秒前
Lucas应助酷酷的书雁采纳,获得30
38秒前
everlasting发布了新的文献求助10
39秒前
就是梦而已完成签到,获得积分10
40秒前
41秒前
冷静白亦发布了新的文献求助10
41秒前
韦鑫龙完成签到,获得积分10
41秒前
年年有余完成签到,获得积分10
42秒前
HHH发布了新的文献求助10
42秒前
在水一方应助纯真沛儿采纳,获得10
43秒前
etzel关注了科研通微信公众号
43秒前
江氏巨颏虎完成签到,获得积分20
44秒前
鬼笔环肽完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642