3MO Multimodal data fusion for improved risk stratification of breast cancer with multi-task 3D deep learning model: A multicenter study

医学 危险分层 乳腺癌 分层(种子) 人工智能 肿瘤科 内科学 癌症 计算机科学 种子休眠 植物 发芽 休眠 生物
作者
Weilong Ren,Y.H. Yu,Wenhao Ouyang,Luhui Mao,Qin Yao,Yongtao Tan,Zhiwei He,Tao Li,Zhe Zhang,Jinfeng Wang,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:34: S1469-S1469 被引量:1
标识
DOI:10.1016/j.annonc.2023.10.135
摘要

Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study aims to the amalgamation of artificial intelligence innovation and medical research by developing a novel multi-task 3D deep learning model with MRI-based multimodal data fusion. This pioneering multicenter study involves 1,244 non-metastatic breast cancer patients, who were assigned into the training cohort (n = 456), internal validation cohort (n = 113), external testing cohort 1 (n = 432), and external testing cohort 2 (n = 198). An innovative multimodal approach integrating clinicopathological data with deep learning MRI insights yielded the multi-task 3D deep learning model (3D-MMR-model), which was developed for tumor segmentation and disease-free survival (DFS) prediction. The efficacy was demonstrated through tumor segmentation accuracy metrics and DFS prediction AUC values. Visualization techniques provided insight into decision-making processes, correlating model predictions with the tumor microenvironment. The 3D-MMR-model demonstrated a high degree of predictive accuracy and significant boost for DFS. The AUC for 4-year DFS prediction escalated to 0.98, 0.97, 0.90, and 0.93 within the training cohort, internal validation cohort, external testing cohort 1, and external testing cohort 2, respectively. Our multimodal model showcased significant distinctions in DFS between patients with high versus low risk scores (All P < 0.001). Moreover, a decision curve analysis underscored that the multimodal model yielded a superior net benefit across a broad range of threshold probabilities within all cohorts, which implies the multimodal model adds substantial clinical value to early DFS prediction. Furthermore, patients in the high-risk group displayed concentrated hotspots in regions near or distant from the tumor and revealed an elevated presence of antigen-presenting cells. This study introduces a transformative approach to breast cancer prognosis, amalgamating imaging and clinical data for enhanced predictive accuracy, thus holding promise for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾闭月发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
4秒前
4秒前
yh完成签到,获得积分10
4秒前
5秒前
6秒前
万惜文发布了新的文献求助10
6秒前
汉堡包应助猪变成了蛾子采纳,获得10
6秒前
李健的粉丝团团长应助tyx采纳,获得10
7秒前
22给22的求助进行了留言
7秒前
7秒前
7秒前
8秒前
搬砖民工发布了新的文献求助10
8秒前
8秒前
无限向珊完成签到,获得积分10
8秒前
8秒前
Six_seven完成签到,获得积分10
8秒前
JamesPei应助从别后忆相逢采纳,获得10
9秒前
9秒前
god发布了新的文献求助10
10秒前
wcwzcz完成签到,获得积分10
11秒前
今后应助沉默的尔槐采纳,获得10
11秒前
残梦蝶发布了新的文献求助10
11秒前
re发布了新的文献求助10
11秒前
李爱国应助邵邵采纳,获得10
11秒前
扁桃体不发言完成签到,获得积分10
11秒前
英姑应助xiaobei88采纳,获得10
12秒前
13秒前
沧海一粟完成签到,获得积分10
13秒前
fzy发布了新的文献求助10
14秒前
程院发布了新的文献求助10
14秒前
爆米花应助沉默凡梦采纳,获得10
14秒前
东旭大兵发布了新的文献求助10
14秒前
herococa应助chengzi采纳,获得10
15秒前
老实怀蝶完成签到,获得积分10
15秒前
传奇3应助min采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089