3MO Multimodal data fusion for improved risk stratification of breast cancer with multi-task 3D deep learning model: A multicenter study

医学 危险分层 乳腺癌 分层(种子) 人工智能 肿瘤科 内科学 癌症 计算机科学 休眠 植物 生物 种子休眠 发芽
作者
Weilong Ren,Y.H. Yu,Wenhao Ouyang,Luhui Mao,Qin Yao,Yongtao Tan,Zhiwei He,Tao Li,Zhe Zhang,Jinfeng Wang,Herui Yao
出处
期刊:Annals of Oncology [Elsevier]
卷期号:34: S1469-S1469 被引量:1
标识
DOI:10.1016/j.annonc.2023.10.135
摘要

Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study aims to the amalgamation of artificial intelligence innovation and medical research by developing a novel multi-task 3D deep learning model with MRI-based multimodal data fusion. This pioneering multicenter study involves 1,244 non-metastatic breast cancer patients, who were assigned into the training cohort (n = 456), internal validation cohort (n = 113), external testing cohort 1 (n = 432), and external testing cohort 2 (n = 198). An innovative multimodal approach integrating clinicopathological data with deep learning MRI insights yielded the multi-task 3D deep learning model (3D-MMR-model), which was developed for tumor segmentation and disease-free survival (DFS) prediction. The efficacy was demonstrated through tumor segmentation accuracy metrics and DFS prediction AUC values. Visualization techniques provided insight into decision-making processes, correlating model predictions with the tumor microenvironment. The 3D-MMR-model demonstrated a high degree of predictive accuracy and significant boost for DFS. The AUC for 4-year DFS prediction escalated to 0.98, 0.97, 0.90, and 0.93 within the training cohort, internal validation cohort, external testing cohort 1, and external testing cohort 2, respectively. Our multimodal model showcased significant distinctions in DFS between patients with high versus low risk scores (All P < 0.001). Moreover, a decision curve analysis underscored that the multimodal model yielded a superior net benefit across a broad range of threshold probabilities within all cohorts, which implies the multimodal model adds substantial clinical value to early DFS prediction. Furthermore, patients in the high-risk group displayed concentrated hotspots in regions near or distant from the tumor and revealed an elevated presence of antigen-presenting cells. This study introduces a transformative approach to breast cancer prognosis, amalgamating imaging and clinical data for enhanced predictive accuracy, thus holding promise for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxiao发布了新的文献求助10
1秒前
科研小白完成签到 ,获得积分10
1秒前
Sun1c7发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
mufcyang完成签到,获得积分10
2秒前
JamesPei应助lzw采纳,获得10
3秒前
潇洒小松鼠发布了新的文献求助150
3秒前
大模型应助qqwrv采纳,获得10
3秒前
小朋友完成签到,获得积分10
3秒前
3秒前
史道夫发布了新的文献求助10
4秒前
研友_LjDyNZ发布了新的文献求助20
5秒前
南初发布了新的文献求助20
6秒前
zmy发布了新的文献求助10
6秒前
ss1234ning发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
梧桐发布了新的文献求助10
7秒前
脑洞疼应助小盼盼盼采纳,获得10
7秒前
WYL完成签到,获得积分20
8秒前
8秒前
与山发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
李李子完成签到,获得积分20
11秒前
1+1发布了新的文献求助10
11秒前
安详的断缘完成签到,获得积分10
12秒前
香蕉觅云应助Sun1c7采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
上官若男应助WWW采纳,获得10
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587