Multi‐lane recognition using the YOLO network with rotatable bounding boxes

计算机科学 人工智能 最小边界框 计算机视觉 跳跃式监视 旋转(数学) 方向(向量空间) 集合(抽象数据类型) 对象(语法) 视觉对象识别的认知神经科学 基本事实 图像(数学) 模式识别(心理学) 数学 几何学 程序设计语言
作者
Hee‐Mun Park,Jin‐Hyun Park
出处
期刊:Journal of The Society for Information Display [Wiley]
卷期号:31 (3): 133-142
标识
DOI:10.1002/jsid.1193
摘要

Abstract Currently, driver assistance and autonomous driving functions are emerging as essential convenience functions in automobiles. For autonomous driving, fast and accurate lane recognition is required, along with driving environment recognition. The recognized lanes must be divided into ego and left‐ and right‐side lanes. Among deep learning, the You Only Look Once (YOLO) network is widely known as a fast and accurate object detection technique. The general methods are not robust to angle variations of the objects because of the use of a traditional bounding box, a rotation variant structure for locating rotated objects. The rotatable bounding box (RBBox) can effectively handle situations where the orientation angles of the objects are arbitrary. This study uses a YOLO approach with RBBox to recognize multi‐lane accurately. The proposed method recognizes the ego lane and its surrounding lanes by accurately distinguishing them. And the proposed method shows stable multi‐lane recognition performance by predicting them that exist in the images but do not exist in the ground truth of the TuSimple data set. Even compared to other lane recognition methods, it shows good competitiveness. Nevertheless, more training data and network learning are needed in a specific road environment (a lane is centered on the image).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心映寒完成签到 ,获得积分10
刚刚
刚刚
fff完成签到,获得积分10
刚刚
领导范儿应助MJQ采纳,获得100
刚刚
1秒前
Owen应助世界尽头采纳,获得10
1秒前
echolan发布了新的文献求助10
2秒前
SID完成签到,获得积分10
2秒前
中九完成签到 ,获得积分10
2秒前
Rrr完成签到,获得积分10
2秒前
hehuan0520完成签到,获得积分10
2秒前
2秒前
打打应助chinning采纳,获得10
2秒前
桐桐应助wangyanyan采纳,获得10
3秒前
3秒前
zzznznnn发布了新的文献求助10
3秒前
jogrgr发布了新的文献求助10
4秒前
sun发布了新的文献求助10
4秒前
布鲁鲁发布了新的文献求助10
4秒前
自信晟睿完成签到,获得积分10
4秒前
酷波er应助哒哒采纳,获得10
5秒前
5秒前
沉默乐荷完成签到,获得积分10
5秒前
rstorz应助皮尤尤采纳,获得10
5秒前
sweetbearm应助小离采纳,获得10
5秒前
何青岚关注了科研通微信公众号
6秒前
doudou完成签到,获得积分20
6秒前
李健的小迷弟应助潦草采纳,获得10
6秒前
7秒前
7秒前
7秒前
柒八染完成签到,获得积分10
7秒前
wsljc134完成签到,获得积分20
7秒前
8秒前
善良香岚完成签到,获得积分20
8秒前
8秒前
8秒前
123发布了新的文献求助10
8秒前
8秒前
不安太阳完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759