Multi‐lane recognition using the YOLO network with rotatable bounding boxes

计算机科学 人工智能 最小边界框 计算机视觉 跳跃式监视 旋转(数学) 方向(向量空间) 集合(抽象数据类型) 对象(语法) 视觉对象识别的认知神经科学 基本事实 图像(数学) 模式识别(心理学) 数学 几何学 程序设计语言
作者
Hee‐Mun Park,Jin‐Hyun Park
出处
期刊:Journal of The Society for Information Display [Wiley]
卷期号:31 (3): 133-142
标识
DOI:10.1002/jsid.1193
摘要

Abstract Currently, driver assistance and autonomous driving functions are emerging as essential convenience functions in automobiles. For autonomous driving, fast and accurate lane recognition is required, along with driving environment recognition. The recognized lanes must be divided into ego and left‐ and right‐side lanes. Among deep learning, the You Only Look Once (YOLO) network is widely known as a fast and accurate object detection technique. The general methods are not robust to angle variations of the objects because of the use of a traditional bounding box, a rotation variant structure for locating rotated objects. The rotatable bounding box (RBBox) can effectively handle situations where the orientation angles of the objects are arbitrary. This study uses a YOLO approach with RBBox to recognize multi‐lane accurately. The proposed method recognizes the ego lane and its surrounding lanes by accurately distinguishing them. And the proposed method shows stable multi‐lane recognition performance by predicting them that exist in the images but do not exist in the ground truth of the TuSimple data set. Even compared to other lane recognition methods, it shows good competitiveness. Nevertheless, more training data and network learning are needed in a specific road environment (a lane is centered on the image).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
番豆完成签到,获得积分10
刚刚
刚刚
点墨完成签到 ,获得积分10
1秒前
1秒前
忧伤的冰彤完成签到,获得积分10
2秒前
小李发布了新的文献求助10
2秒前
Ruby完成签到,获得积分20
3秒前
方文杰发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
李扒皮发布了新的文献求助10
6秒前
6秒前
6秒前
田様应助HHH采纳,获得10
6秒前
每天都想吃东西完成签到 ,获得积分10
6秒前
7bruce完成签到,获得积分10
7秒前
大个应助纪糜采纳,获得10
7秒前
顺心夜南应助萝卜干采纳,获得50
7秒前
Yamsh完成签到,获得积分20
8秒前
悦己发布了新的文献求助30
8秒前
zh20130完成签到,获得积分10
8秒前
8秒前
lll发布了新的文献求助10
8秒前
没天赋发布了新的文献求助10
9秒前
鱼圆杂铺发布了新的文献求助10
9秒前
9秒前
啦啦啦123发布了新的文献求助10
9秒前
善学以致用应助111采纳,获得10
10秒前
10秒前
10秒前
NETO完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
如意白易发布了新的文献求助10
10秒前
烟花应助Robbie采纳,获得10
10秒前
英俊的铭应助肉鸡采纳,获得10
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099