Multi‐lane recognition using the YOLO network with rotatable bounding boxes

计算机科学 人工智能 最小边界框 计算机视觉 跳跃式监视 旋转(数学) 方向(向量空间) 集合(抽象数据类型) 对象(语法) 视觉对象识别的认知神经科学 基本事实 图像(数学) 模式识别(心理学) 数学 几何学 程序设计语言
作者
Hee‐Mun Park,Jin‐Hyun Park
出处
期刊:Journal of The Society for Information Display [Wiley]
卷期号:31 (3): 133-142
标识
DOI:10.1002/jsid.1193
摘要

Abstract Currently, driver assistance and autonomous driving functions are emerging as essential convenience functions in automobiles. For autonomous driving, fast and accurate lane recognition is required, along with driving environment recognition. The recognized lanes must be divided into ego and left‐ and right‐side lanes. Among deep learning, the You Only Look Once (YOLO) network is widely known as a fast and accurate object detection technique. The general methods are not robust to angle variations of the objects because of the use of a traditional bounding box, a rotation variant structure for locating rotated objects. The rotatable bounding box (RBBox) can effectively handle situations where the orientation angles of the objects are arbitrary. This study uses a YOLO approach with RBBox to recognize multi‐lane accurately. The proposed method recognizes the ego lane and its surrounding lanes by accurately distinguishing them. And the proposed method shows stable multi‐lane recognition performance by predicting them that exist in the images but do not exist in the ground truth of the TuSimple data set. Even compared to other lane recognition methods, it shows good competitiveness. Nevertheless, more training data and network learning are needed in a specific road environment (a lane is centered on the image).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wan完成签到,获得积分10
1秒前
清喻发布了新的文献求助50
1秒前
任性的白玉完成签到 ,获得积分10
1秒前
种田发布了新的文献求助10
1秒前
Frank完成签到 ,获得积分10
2秒前
慕青应助孤独梦安采纳,获得10
2秒前
领导范儿应助务实豁采纳,获得30
2秒前
TheMonster完成签到,获得积分10
3秒前
自由溪灵完成签到,获得积分10
4秒前
听雨完成签到,获得积分10
4秒前
4秒前
4秒前
秋菲菲完成签到,获得积分10
6秒前
Hello应助半夜炒茄子采纳,获得10
6秒前
ding应助Momo采纳,获得10
6秒前
王香香发布了新的文献求助10
7秒前
Cholera完成签到,获得积分10
8秒前
愉快惜海发布了新的文献求助30
8秒前
zhang完成签到,获得积分10
8秒前
小蘑菇应助典雅的静采纳,获得10
9秒前
物理幽灵发布了新的文献求助10
9秒前
无限雨南完成签到,获得积分10
9秒前
阿北完成签到,获得积分10
9秒前
10秒前
xia_完成签到,获得积分10
10秒前
优雅的沛春完成签到 ,获得积分10
10秒前
bkagyin应助星沉静默采纳,获得10
10秒前
10秒前
10秒前
聪明发布了新的文献求助10
11秒前
乐乐应助spy采纳,获得10
11秒前
11秒前
FashionBoy应助美好的莫英采纳,获得10
12秒前
泽ze完成签到,获得积分10
12秒前
感动傀斗完成签到,获得积分10
13秒前
lwz2688完成签到,获得积分10
13秒前
深情安青应助流萤采纳,获得10
14秒前
14秒前
wonderingria发布了新的文献求助10
14秒前
Jerry发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124