Automated Well Log Interpretation Through Machine Learning

岩石物理学 计算机科学 人工智能 测井 聚类分析 机器学习 数据挖掘 地层评价 自动化 模式识别(心理学) 算法 地球物理学 地质学 多孔性 工程类 岩土工程 机械工程
作者
Wassem Alward,Mohammed A. Aljubouri,Ling Zongfa,Xu Xiaori,Xu Wei,Zhao Yu-fang
标识
DOI:10.2118/214055-ms
摘要

Abstract Well logs present a concise, in-depth representation of formation parameters. These logs allow interpreters to identify different rock types, distinguish porous from non-porous rocks, and quickly identify pay zones in subsurface formations. The ability to interpret well logs is largely dependent on the interpreter's ability to recognize patterns, past experiences, and knowledge of each measurement. Traditionally, logs were manually corrected for anomalies and normalized at the field scale, which is a time-consuming and often subjective approach. This is especially true for mature fields where log data has been collected from multiple sources. However, the future of petrophysical evaluation is moving towards increased efficiency, accuracy, and objectivity through smart automation. In this paper, we demonstrate the application of machine learning algorithms to automate well-log processing and interpretation of standard log measurements as well as nuclear magnetic resonance (NMR) using data acquired in one of the fields in Iraq. Standard logs such as density, sonic, neutron, gamma ray, etc are classified using machine learning (ML) algorithm into a set of classes that are converted to zones to drive petrophysical interpretation. This novel application of ML algorithm uses cross-entropy clustering (CEC), Gaussian mixture model (GMM), and Hidden Markov Model (HMM) which identifies locally stationary zones sharing similar statistical properties in logs, and then propagates zonation information from training wells to other wells. The training phase involves key wells which best represent the formation and associated heterogeneities to automatically generate classes (clusters), the resulting model is then used to reconstruct inputs and outputs with uncertainty and outlier flags for cross-checking and validation. The model is then applied to predict the same set of zones in the new wells that require interpretation and predict output curves. The main advantage is reducing the turnaround time of the interpretation and eliminating subjective inconsistencies often encountered with standard interpretation approaches. For multi-dimensional data such as NMR, several ML methods such as Parallel Analysis, Factor Analysis, and Cluster Analysis were applied to (a) determine the optimal number of modes to retain in the input NMR T2 distributions, these modes are the underlying poro-fluid constituents affecting NMR data over the entire interval b) decompose T2 distribution into these modes c) compute poro-fluid constituents volumes and cluster it into the same number of groups as the number of factors. This workflow helps to extract maximum information from multi-dimensional NMR data and eliminates the need for any a-priory assumptions, such as T2 cut-offs. We present the results of these methods applied to data acquired across the cretaceous successions in the south of Iraq to speed up the petrophysical analysis process, reduce analyst bias, and improve consistency results between one well to another within the same field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Lxxx_7采纳,获得10
刚刚
烟花应助永远少年采纳,获得10
刚刚
meng发布了新的文献求助10
2秒前
科研通AI5应助贪吃的猴子采纳,获得10
4秒前
4秒前
可爱的彩虹完成签到,获得积分10
4秒前
小确幸完成签到,获得积分10
4秒前
彭于晏应助毛毛虫采纳,获得10
5秒前
LilyChen完成签到 ,获得积分10
5秒前
Owen应助Su采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
yyyy关注了科研通微信公众号
7秒前
Jane完成签到 ,获得积分10
8秒前
8秒前
8秒前
kento发布了新的文献求助30
8秒前
Akim应助balzacsun采纳,获得10
9秒前
狼来了aas发布了新的文献求助10
9秒前
10秒前
didi完成签到,获得积分10
10秒前
嘻嘻发布了新的文献求助10
12秒前
冲冲冲完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
善良身影完成签到,获得积分10
15秒前
天天快乐应助郭豪琪采纳,获得10
16秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824