Automated Well Log Interpretation Through Machine Learning

岩石物理学 计算机科学 人工智能 测井 聚类分析 机器学习 数据挖掘 地层评价 自动化 模式识别(心理学) 算法 地球物理学 地质学 多孔性 工程类 岩土工程 机械工程
作者
Wassem Alward,Mohammed A. Aljubouri,Ling Zongfa,Xu Xiaori,Xu Wei,Zhao Yu-fang
标识
DOI:10.2118/214055-ms
摘要

Abstract Well logs present a concise, in-depth representation of formation parameters. These logs allow interpreters to identify different rock types, distinguish porous from non-porous rocks, and quickly identify pay zones in subsurface formations. The ability to interpret well logs is largely dependent on the interpreter's ability to recognize patterns, past experiences, and knowledge of each measurement. Traditionally, logs were manually corrected for anomalies and normalized at the field scale, which is a time-consuming and often subjective approach. This is especially true for mature fields where log data has been collected from multiple sources. However, the future of petrophysical evaluation is moving towards increased efficiency, accuracy, and objectivity through smart automation. In this paper, we demonstrate the application of machine learning algorithms to automate well-log processing and interpretation of standard log measurements as well as nuclear magnetic resonance (NMR) using data acquired in one of the fields in Iraq. Standard logs such as density, sonic, neutron, gamma ray, etc are classified using machine learning (ML) algorithm into a set of classes that are converted to zones to drive petrophysical interpretation. This novel application of ML algorithm uses cross-entropy clustering (CEC), Gaussian mixture model (GMM), and Hidden Markov Model (HMM) which identifies locally stationary zones sharing similar statistical properties in logs, and then propagates zonation information from training wells to other wells. The training phase involves key wells which best represent the formation and associated heterogeneities to automatically generate classes (clusters), the resulting model is then used to reconstruct inputs and outputs with uncertainty and outlier flags for cross-checking and validation. The model is then applied to predict the same set of zones in the new wells that require interpretation and predict output curves. The main advantage is reducing the turnaround time of the interpretation and eliminating subjective inconsistencies often encountered with standard interpretation approaches. For multi-dimensional data such as NMR, several ML methods such as Parallel Analysis, Factor Analysis, and Cluster Analysis were applied to (a) determine the optimal number of modes to retain in the input NMR T2 distributions, these modes are the underlying poro-fluid constituents affecting NMR data over the entire interval b) decompose T2 distribution into these modes c) compute poro-fluid constituents volumes and cluster it into the same number of groups as the number of factors. This workflow helps to extract maximum information from multi-dimensional NMR data and eliminates the need for any a-priory assumptions, such as T2 cut-offs. We present the results of these methods applied to data acquired across the cretaceous successions in the south of Iraq to speed up the petrophysical analysis process, reduce analyst bias, and improve consistency results between one well to another within the same field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cjh发布了新的文献求助10
1秒前
1秒前
bkagyin应助棠棠采纳,获得10
2秒前
bkagyin应助顾翩翩采纳,获得10
2秒前
郭佳怡发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
能干砖家发布了新的文献求助10
5秒前
WU发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
等等发布了新的文献求助10
8秒前
Jasper应助yxy采纳,获得10
8秒前
科研通AI6.1应助xiaoyu采纳,获得10
8秒前
8秒前
looklook发布了新的文献求助10
8秒前
9秒前
Fancy应助bubble采纳,获得30
10秒前
皮代谷发布了新的文献求助10
10秒前
陶逸豪发布了新的文献求助10
10秒前
阿九发布了新的文献求助10
10秒前
abcd完成签到,获得积分20
11秒前
11秒前
今后应助cjh采纳,获得10
11秒前
denny完成签到,获得积分20
12秒前
AAA房地产小王完成签到,获得积分10
12秒前
Meng发布了新的文献求助10
12秒前
12秒前
13秒前
大模型应助jeremyher采纳,获得10
14秒前
14秒前
AN应助WU采纳,获得10
15秒前
香蕉觅云应助WU采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792