Automated Well Log Interpretation Through Machine Learning

岩石物理学 计算机科学 人工智能 测井 聚类分析 机器学习 数据挖掘 地层评价 自动化 模式识别(心理学) 算法 地球物理学 地质学 多孔性 工程类 岩土工程 机械工程
作者
Wassem Alward,Mohammed A. Aljubouri,Ling Zongfa,Xu Xiaori,Xu Wei,Zhao Yu-fang
标识
DOI:10.2118/214055-ms
摘要

Abstract Well logs present a concise, in-depth representation of formation parameters. These logs allow interpreters to identify different rock types, distinguish porous from non-porous rocks, and quickly identify pay zones in subsurface formations. The ability to interpret well logs is largely dependent on the interpreter's ability to recognize patterns, past experiences, and knowledge of each measurement. Traditionally, logs were manually corrected for anomalies and normalized at the field scale, which is a time-consuming and often subjective approach. This is especially true for mature fields where log data has been collected from multiple sources. However, the future of petrophysical evaluation is moving towards increased efficiency, accuracy, and objectivity through smart automation. In this paper, we demonstrate the application of machine learning algorithms to automate well-log processing and interpretation of standard log measurements as well as nuclear magnetic resonance (NMR) using data acquired in one of the fields in Iraq. Standard logs such as density, sonic, neutron, gamma ray, etc are classified using machine learning (ML) algorithm into a set of classes that are converted to zones to drive petrophysical interpretation. This novel application of ML algorithm uses cross-entropy clustering (CEC), Gaussian mixture model (GMM), and Hidden Markov Model (HMM) which identifies locally stationary zones sharing similar statistical properties in logs, and then propagates zonation information from training wells to other wells. The training phase involves key wells which best represent the formation and associated heterogeneities to automatically generate classes (clusters), the resulting model is then used to reconstruct inputs and outputs with uncertainty and outlier flags for cross-checking and validation. The model is then applied to predict the same set of zones in the new wells that require interpretation and predict output curves. The main advantage is reducing the turnaround time of the interpretation and eliminating subjective inconsistencies often encountered with standard interpretation approaches. For multi-dimensional data such as NMR, several ML methods such as Parallel Analysis, Factor Analysis, and Cluster Analysis were applied to (a) determine the optimal number of modes to retain in the input NMR T2 distributions, these modes are the underlying poro-fluid constituents affecting NMR data over the entire interval b) decompose T2 distribution into these modes c) compute poro-fluid constituents volumes and cluster it into the same number of groups as the number of factors. This workflow helps to extract maximum information from multi-dimensional NMR data and eliminates the need for any a-priory assumptions, such as T2 cut-offs. We present the results of these methods applied to data acquired across the cretaceous successions in the south of Iraq to speed up the petrophysical analysis process, reduce analyst bias, and improve consistency results between one well to another within the same field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助se采纳,获得10
刚刚
Adan完成签到,获得积分10
刚刚
芝麻发布了新的文献求助10
刚刚
Benjamin完成签到,获得积分10
1秒前
Lucas应助鱼鱼采纳,获得10
1秒前
xinyuli发布了新的文献求助10
2秒前
我是老大应助朴素的曼易采纳,获得10
2秒前
2秒前
2秒前
浮游应助midori采纳,获得10
2秒前
唱拉拉完成签到,获得积分10
3秒前
lxl1996完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
赵琪完成签到,获得积分10
5秒前
daniel完成签到,获得积分10
6秒前
duduguai完成签到,获得积分10
6秒前
tyh完成签到,获得积分10
7秒前
oneonlycrown完成签到,获得积分10
7秒前
大模型应助Maestro_S采纳,获得10
8秒前
ang完成签到,获得积分10
8秒前
xinyuli完成签到,获得积分10
8秒前
Aspirin发布了新的文献求助10
8秒前
SH123完成签到 ,获得积分0
8秒前
9秒前
菜鸟发布了新的文献求助10
9秒前
芝麻完成签到,获得积分10
10秒前
midori完成签到,获得积分10
10秒前
阡陌完成签到,获得积分10
10秒前
莽哥发布了新的文献求助10
10秒前
10秒前
穷光蛋完成签到 ,获得积分10
10秒前
雪球完成签到 ,获得积分10
10秒前
科研通AI6应助xinyuli采纳,获得30
12秒前
12秒前
jason0023完成签到,获得积分10
13秒前
咕咕完成签到,获得积分10
13秒前
一一完成签到 ,获得积分10
13秒前
小黑马完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363