Automated Well Log Interpretation Through Machine Learning

岩石物理学 计算机科学 人工智能 测井 聚类分析 机器学习 数据挖掘 地层评价 自动化 模式识别(心理学) 算法 地球物理学 地质学 多孔性 工程类 岩土工程 机械工程
作者
Wassem Alward,Mohammed A. Aljubouri,Ling Zongfa,Xu Xiaori,Xu Wei,Zhao Yu-fang
标识
DOI:10.2118/214055-ms
摘要

Abstract Well logs present a concise, in-depth representation of formation parameters. These logs allow interpreters to identify different rock types, distinguish porous from non-porous rocks, and quickly identify pay zones in subsurface formations. The ability to interpret well logs is largely dependent on the interpreter's ability to recognize patterns, past experiences, and knowledge of each measurement. Traditionally, logs were manually corrected for anomalies and normalized at the field scale, which is a time-consuming and often subjective approach. This is especially true for mature fields where log data has been collected from multiple sources. However, the future of petrophysical evaluation is moving towards increased efficiency, accuracy, and objectivity through smart automation. In this paper, we demonstrate the application of machine learning algorithms to automate well-log processing and interpretation of standard log measurements as well as nuclear magnetic resonance (NMR) using data acquired in one of the fields in Iraq. Standard logs such as density, sonic, neutron, gamma ray, etc are classified using machine learning (ML) algorithm into a set of classes that are converted to zones to drive petrophysical interpretation. This novel application of ML algorithm uses cross-entropy clustering (CEC), Gaussian mixture model (GMM), and Hidden Markov Model (HMM) which identifies locally stationary zones sharing similar statistical properties in logs, and then propagates zonation information from training wells to other wells. The training phase involves key wells which best represent the formation and associated heterogeneities to automatically generate classes (clusters), the resulting model is then used to reconstruct inputs and outputs with uncertainty and outlier flags for cross-checking and validation. The model is then applied to predict the same set of zones in the new wells that require interpretation and predict output curves. The main advantage is reducing the turnaround time of the interpretation and eliminating subjective inconsistencies often encountered with standard interpretation approaches. For multi-dimensional data such as NMR, several ML methods such as Parallel Analysis, Factor Analysis, and Cluster Analysis were applied to (a) determine the optimal number of modes to retain in the input NMR T2 distributions, these modes are the underlying poro-fluid constituents affecting NMR data over the entire interval b) decompose T2 distribution into these modes c) compute poro-fluid constituents volumes and cluster it into the same number of groups as the number of factors. This workflow helps to extract maximum information from multi-dimensional NMR data and eliminates the need for any a-priory assumptions, such as T2 cut-offs. We present the results of these methods applied to data acquired across the cretaceous successions in the south of Iraq to speed up the petrophysical analysis process, reduce analyst bias, and improve consistency results between one well to another within the same field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李瑞发布了新的文献求助20
刚刚
刚刚
2秒前
听风完成签到 ,获得积分10
3秒前
英姑应助123采纳,获得10
3秒前
凉茶发布了新的文献求助10
4秒前
jitianxing完成签到,获得积分20
4秒前
BK_发布了新的文献求助10
5秒前
5秒前
FashionBoy应助李瑞采纳,获得10
6秒前
毛豆爸爸发布了新的文献求助10
7秒前
双儿发布了新的文献求助10
8秒前
9秒前
我我我完成签到,获得积分10
9秒前
GCJ完成签到,获得积分10
9秒前
Jasen完成签到 ,获得积分10
10秒前
冬夏完成签到,获得积分10
10秒前
skyer应助jitianxing采纳,获得10
10秒前
Akim应助xiaoyuanbao1988采纳,获得10
10秒前
da1234发布了新的文献求助10
12秒前
12秒前
mianbao完成签到,获得积分10
12秒前
da发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
烟花应助江洋大盗采纳,获得10
17秒前
彩色青雪完成签到,获得积分20
18秒前
LAIJINSHENG发布了新的文献求助10
18秒前
weske发布了新的文献求助10
18秒前
19秒前
19秒前
李爱国应助dzll采纳,获得10
20秒前
CipherSage应助chel采纳,获得30
20秒前
dachang发布了新的文献求助10
20秒前
yyfer完成签到,获得积分10
21秒前
大都督完成签到,获得积分10
21秒前
shower_009完成签到,获得积分10
22秒前
Rondab应助科研通管家采纳,获得10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160