材料科学
透明陶瓷
光致变色
超短脉冲
陶瓷
光电子学
兴奋剂
透明度(行为)
光存储
烧结
铁电性
纳米技术
光学
复合材料
计算机科学
激光器
电介质
物理
计算机安全
作者
Xiao Wu,Fangyuan Yu,Rui Xiong,Peng Wang,Ping Zhou,Baisheng Sa,Cong Lin,Chunlin Zhao,Min Gao,Qiwei Zhang
标识
DOI:10.1021/acsami.2c16645
摘要
A combination of transparency and photochromic (PC) properties in ferroelectrics has promising application potential in smart windows and optical storage/imaging. Nonetheless, limited by understanding the underlying PC mechanism, a splendid PC performance is rarely achieved in transparent ferroelectrics. Here, a strategy to construct deep-lying traps by ion-doping induced defect engineering in (K0.5Na0.5)NbO3-based ferroelectric ceramics is proposed. Based on the improved density functional theory simulations, a high concentration of vacancy defects can be realized by codoping 1 mol % Pr and 4 mol % Ba in (K0.5Na0.5)NbO3, which helps achieving deep-lying traps and then superior PC performance. Through traditional pressureless sintering, highly transparent ceramics with designed optimal composition have been fabricated in a wide sintering temperature range (1170-1210 °C), exhibiting an ultrafast PC feature, i.e., 0.1 s response time (by illumination of 400 nm light), along with high PC efficiency (5.8 cm2·W-1) and PC rate (7.1 s-1), preeminent among reported inorganic PC transparent materials. Additionally, the ceramics have been utilized for real-time optical recording, displaying unambiguous patterning with long-time preservation (21 days). This research supplies a paradigm for designing high-performance PC transparent materials in optical applications and helps deepen the comprehensive understanding of the PC mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI