Generalizable Metamaterials Design Techniques Inspire Efficient Mycelial Materials Inverse Design

超材料 反向 纳米技术 材料科学 计算机科学 工程类 数学 光电子学 几何学
作者
Joseph Zavorskas,Harley Edwards,Mark R. Marten,Steven D. Harris,Ranjan Srivastava
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
标识
DOI:10.1021/acsbiomaterials.4c01986
摘要

Fungal mycelial materials can mimic numerous nonrenewable materials; they are even capable of outperforming certain materials at their own applications. Fungi's versatility makes mock leather, bricks, wood, foam, meats, and many other products possible. That said, there is currently a critical need to develop efficient mycelial materials design techniques. In mycelial materials, and the wider field of biomaterials, design is primarily limited to costly forward techniques. New mycelial materials could be developed faster and cheaper with robust inverse design techniques, which are not currently used within the field. However, computational inverse design techniques will not be tractable unless clear and concrete design parameters are defined for fungi, derived from genotype and bulk phenotype characteristics. Through mycelial materials case studies and a comprehensive review of metamaterials design techniques, we identify three critical needs that must be addressed to implement computational inverse design in mycelial materials. These critical needs are the following: 1) heuristic search/optimization algorithms, 2) efficient mathematical modeling, and 3) dimensionality reduction techniques. Metamaterials researchers already use many of these computational techniques that can be adapted for mycelial materials inverse design. Then, we suggest mycelium-specific parameters as well as how to measure and use them. Ultimately, based on a review of metamaterials research and the current state of mycelial materials design, we synthesize a generalizable inverse design paradigm that can be applied to mycelial materials or related design fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
万能图书馆应助畅快大象采纳,获得10
9秒前
eno完成签到,获得积分10
9秒前
yyz发布了新的文献求助10
12秒前
ding应助yiyi采纳,获得10
12秒前
13秒前
无心的闭月完成签到,获得积分10
13秒前
棠棠完成签到 ,获得积分10
14秒前
小妞的网发布了新的文献求助10
15秒前
Lxx完成签到 ,获得积分10
16秒前
16秒前
领导范儿应助xiao采纳,获得20
16秒前
17秒前
打打应助拉布拉多多不多采纳,获得10
17秒前
mrlan完成签到 ,获得积分10
18秒前
sky完成签到,获得积分10
19秒前
赘婿应助xf采纳,获得10
19秒前
嘻嘻发布了新的文献求助10
20秒前
鸭蛋完成签到 ,获得积分10
20秒前
20秒前
梓毅完成签到,获得积分10
20秒前
高高浩然完成签到,获得积分10
20秒前
MTF发布了新的文献求助10
23秒前
QQQ完成签到,获得积分10
24秒前
陈瑶完成签到,获得积分10
25秒前
wyd发布了新的文献求助10
25秒前
28秒前
儒雅奇男子完成签到 ,获得积分10
30秒前
李健的小迷弟应助yrheong采纳,获得10
30秒前
小妞的网完成签到,获得积分10
31秒前
勤奋的白桃完成签到,获得积分10
31秒前
31秒前
31秒前
wyd完成签到,获得积分10
32秒前
Healer完成签到,获得积分10
32秒前
33秒前
33秒前
shuofang发布了新的文献求助10
35秒前
37秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673961
求助须知:如何正确求助?哪些是违规求助? 3229371
关于积分的说明 9785618
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611546
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344