材料科学
解耦(概率)
成核
锡
晶体生长
光电子学
自组装
钙钛矿(结构)
纳米技术
化学工程
结晶学
冶金
有机化学
化学
控制工程
工程类
作者
He Dong,Rui Huang,Weiyin Gao,Wangyue Li,Xueqin Ran,Lingfeng Chao,Xiaobo Wang,Yipeng Zhou,Zhongbin Wu,Yonghua Chen,Chenxin Ran
标识
DOI:10.1002/adfm.202420593
摘要
Abstract Tin (Sn)‐based perovskites show significant potential in lead‐free perovskite optoelectronics. Currently, the spin‐coating method combining DMSO co‐solvent and antisolvent‐dropping has been adopted to produce Sn‐based perovskite films. However, DMSO intrinsically oxidizes Sn 2+ while fast antisolvent‐dropping causes serious coupling between crystal nucleation and growth, leading to the easy formation of defects and poor stability of Sn‐based perovskite films. Herein, hydrazine acetate (HAAc) ionic salt, possessing strong coordination ability with Sn 2+ , is developed to stabilize Sn 2+ and decouple the crystallization by promoting pre‐formed crystals (PFCs) in precursor solution and enabling the self‐assembly of PFCs during spin‐coating. The HA x FA 1‐x SnI 3 films fabricated by this PFCs self‐assembly technique show tunable bandgap, low defect density, and oriented crystals, producing optoelectronic devices with decent photovoltaic and electroluminescence performance. The DMSO‐free one‐step film‐forming enabled by HAAc‐assisted crystallization decoupling can open up new avenues for facile and low‐cost manufacturing of efficient and stable optoelectronic devices adopting Sn‐based perovskite films.
科研通智能强力驱动
Strongly Powered by AbleSci AI