Light-printable rewritable paper that can be used multiple times has attracted extensive attention because of its potential benefits in reducing environmental pollution and energy consumption. Developing rewritable paper with high black-to-colorless contrast, lasting legibility, and a fast response is fascinating but challenging. Here, we integrate the redox chemistry of Cu2+ ions into photoreductive TiO2 nanoparticles to produce Cu-doped TiO2 nanoparticles capable of highly photoreversible switching between colorless and black with excellent contrast and color stability. Incorporating such nanoparticles into hydroxyethyl cellulose produces a rewritable paper with the same appearance as that of conventional paper. More importantly, it demonstrates great features promising for practical applications, including high black-to-colorless contrast, fast light-printing (<20 s), long legible time (>3 days), high reversibility (>50 cycles), high resolution (90 μm), and large scale (A4 size) applicability.