Cross-layer hybrid feature aggregation network for change detection in very high-resolution remote sensing images

遥感 变更检测 特征(语言学) 计算机科学 图层(电子) 图像分辨率 特征提取 模式识别(心理学) 人工智能 地质学 材料科学 语言学 哲学 复合材料
作者
Shaopeng Ding,Xiushan Lu,Rufei Liu,Yi Yang,Haiyan Gu,Haitao Li
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:19 (01)
标识
DOI:10.1117/1.jrs.19.016504
摘要

Very high-resolution remote sensing images are used to detect the changes with finer results. Accompanying with plenty of details, the environment around targets also becomes more complex, which poses challenges for change detection. In recent years, hybrid methods based on transformer and CNN have been widely used. The two methods usually are adopted to extract the change information because they can take advantage of global semantic relations and long-range spatial dependencies at the same time. However, within some complex environments, there is still information loss and inaccurate detection because the features cannot be fully integrated. We proposed a new cross-level hybrid feature aggregation network for change detection to improve the performance of change detection, especially within a complex environment. Within the new network, a parallel hybrid CNN-Transformer structure is adopted to model globally and locally, which extracts the features of different levels and produces rich semantic features. Meanwhile, the multi-branch feature interaction is used to implement interaction and fusion for multiscale feature information. Furthermore, multiscale feature aggregation was applied to remove redundancy. Subsequently, CNN-Transformer change feature enhancement is used to enhance the representation. Compared with several state-of-the-art methods on three available datasets, the accuracy is increased by 0.09%, 1.12%, and 2.62%, respectively. The experiments indicate that the method proposed in this paper detects the changed targets as continuous and complete objects with clear edges. Within a complex environment, it suppresses pseudo-changes and extracts more small changed targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ发布了新的文献求助10
刚刚
Vicky147发布了新的文献求助10
刚刚
1秒前
阿甘完成签到,获得积分10
1秒前
Jiang湫发布了新的文献求助10
2秒前
wise111发布了新的文献求助10
3秒前
彩色觅荷完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
俞思含发布了新的文献求助10
7秒前
尹冰之完成签到,获得积分10
7秒前
zhinian28完成签到,获得积分10
8秒前
蓝泡泡完成签到 ,获得积分10
9秒前
10秒前
研团团发布了新的文献求助10
10秒前
bbb发布了新的文献求助10
12秒前
柚子完成签到,获得积分10
13秒前
大模型应助幸福大白采纳,获得10
13秒前
共享精神应助harmy采纳,获得10
14秒前
西原的橙果完成签到,获得积分10
14秒前
14秒前
JuliaWang应助搞怪的太阳采纳,获得50
14秒前
qiqilu发布了新的文献求助10
14秒前
充电宝应助三哥采纳,获得30
14秒前
Neuro_dan完成签到,获得积分0
15秒前
Q_Q发布了新的文献求助10
17秒前
18秒前
yyt发布了新的文献求助10
18秒前
19秒前
典雅匕完成签到,获得积分20
19秒前
19秒前
Zn应助青檀采纳,获得10
20秒前
20秒前
小曾完成签到 ,获得积分10
21秒前
bbb完成签到,获得积分10
21秒前
领导范儿应助kx采纳,获得10
21秒前
yzk发布了新的文献求助10
23秒前
猪猪侠发布了新的文献求助10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551910
求助须知:如何正确求助?哪些是违规求助? 3128345
关于积分的说明 9377313
捐赠科研通 2827348
什么是DOI,文献DOI怎么找? 1554303
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714834