Advancements and Perspective in the Quantitative Assessment of Soil Salinity Utilizing Remote Sensing and Machine Learning Algorithms: A Review

土壤盐分 盐度 环境科学 元数据 排名(信息检索) 采样(信号处理) 遥感 计算机科学 变量(数学) 土壤科学 湿地 算法 机器学习 数据挖掘 土壤水分 数学 地理 地质学 生态学 数学分析 操作系统 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Fei Wang,Lili Han,Lulu Liu,Chengjie Bai,Jinxi Ao,Hsiao-Wei Hu,Rongrong Li,Xiaojing Li,Xian Guo,Wei Yang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (24): 4812-4812 被引量:1
标识
DOI:10.3390/rs16244812
摘要

Soil salinization is a significant global ecological issue that leads to soil degradation and is recognized as one of the primary factors hindering the sustainable development of irrigated farmlands and deserts. The integration of remote sensing (RS) and machine learning algorithms is increasingly employed to deliver cost-effective, time-efficient, spatially resolved, accurately mapped, and uncertainty-quantified soil salinity information. We reviewed articles published between January 2016 and December 2023 on remote sensing-based soil salinity prediction and synthesized the latest research advancements in terms of innovation points, data, methodologies, variable importance, global soil salinity trends, current challenges, and potential future research directions. Our observations indicate that the innovations in this field focus on detection depth, iterations of data conversion methods, and the application of newly developed sensors. Statistical analysis reveals that Landsat is the most frequently utilized sensor in these studies. Furthermore, the application of deep learning algorithms remains underexplored. The ranking of soil salinity prediction accuracy across the various study areas is as follows: lake wetland (R2 = 0.81) > oasis (R2 = 0.76) > coastal zone (R2 = 0.74) > farmland (R2 = 0.71). We also examined the relationship between metadata and prediction accuracy: (1) Validation accuracy, sample size, number of variables, and mean sample salinity exhibited some correlation with modeling accuracy, while sampling depth, variable type, sampling time, and maximum salinity did not influence modeling accuracy. (2) Across a broad range of scales, large sample sizes may lead to error accumulation, which is associated with the geographic diversity of the study area. (3) The inclusion of additional environmental variables does not necessarily enhance modeling accuracy. (4) Modeling accuracy improves when the mean salinity of the study area exceeds 30 dS/m. Topography, vegetation, and temperature are relatively significant environmental covariates. Over the past 30 years, the global area affected by soil salinity has been increasing. To further enhance prediction accuracy, we provide several suggestions for the challenges and directions for future research. While remote sensing is not the sole solution, it provides unique advantages for soil salinity-related studies at both regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟冬卉完成签到,获得积分10
刚刚
小二郎应助乙酸乙酯采纳,获得10
1秒前
1秒前
1秒前
Dream完成签到 ,获得积分10
3秒前
CQ完成签到 ,获得积分10
3秒前
3秒前
木木发布了新的文献求助10
5秒前
5秒前
6秒前
LXl发布了新的文献求助10
7秒前
anan完成签到 ,获得积分10
7秒前
科研之光发布了新的文献求助10
8秒前
8秒前
乐乐应助笑点低诗双采纳,获得10
12秒前
13秒前
lbyscu完成签到 ,获得积分10
13秒前
谭平发布了新的文献求助10
14秒前
火星仙人掌完成签到 ,获得积分10
14秒前
15秒前
15秒前
李健的小迷弟应助geoman采纳,获得10
17秒前
zhuzi发布了新的文献求助10
17秒前
CHENJIRU发布了新的文献求助10
18秒前
19秒前
shenerqing完成签到,获得积分10
20秒前
追寻的凡松完成签到,获得积分10
21秒前
易水发布了新的文献求助10
22秒前
隐形的飞雪完成签到,获得积分10
24秒前
传奇3应助trace采纳,获得10
24秒前
笑点低诗双完成签到,获得积分10
28秒前
老Mark完成签到,获得积分10
30秒前
科研通AI5应助看文献的狗采纳,获得10
30秒前
32秒前
在水一方应助cc采纳,获得10
32秒前
wzxxxx完成签到,获得积分10
33秒前
33秒前
violet关注了科研通微信公众号
36秒前
白华苍松发布了新的文献求助20
38秒前
Jonas完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572102
求助须知:如何正确求助?哪些是违规求助? 3142380
关于积分的说明 9447398
捐赠科研通 2843806
什么是DOI,文献DOI怎么找? 1563098
邀请新用户注册赠送积分活动 731575
科研通“疑难数据库(出版商)”最低求助积分说明 718603