理论(学习稳定性)
时滞微分方程
数学
微分方程
分叉
数学分析
平面(几何)
班级(哲学)
控制理论(社会学)
物理
计算机科学
几何学
非线性系统
控制(管理)
人工智能
量子力学
机器学习
作者
Sachin Bhalekar,Parikshit Dutta
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-01-01
卷期号:35 (1)
摘要
The differential equations involving two discrete delays are helpful in modeling two different processes in one model. We provide the stability and bifurcation analysis in the fractional order delay differential equation Dαx(t)=ax(t)+bx(t−τ)−bx(t−2τ) in the ab-plane. Various regions of stability include stable, unstable, single stable region (SSR), and stability switch (SS). In the stable region, the system is stable for all the delay values. The region SSR has a critical value of delay that bifurcates the stable and unstable behavior. Switching of stable and unstable behaviors is observed in the SS region.
科研通智能强力驱动
Strongly Powered by AbleSci AI