Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO2 reduction

电催化剂 电化学 材料科学 散射 氧化物 催化作用 纳米技术 化学工程 化学物理 化学 电极 物理化学 光学 物理 冶金 生物化学 工程类
作者
Jim de Ruiter,Vincent R. M. Benning,Shuang Yang,B. J. den Hartigh,Hui Wang,P. Tim Prins,Joren M. Dorresteijn,Joris C. L. Janssens,Gouranga Manna,Andrei V. Petukhov,Bert M. Weckhuysen,Freddy T. Rabouw,Ward van der Stam
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55742-5
摘要

Electrochemical reduction of carbon dioxide (CO2) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO2 conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO2 reduction conditions. Using well-defined Cu2O octahedra and cubes, in situ X-ray scattering experiments track morphological changes at small scattering angles and phase transformations at wide angles, with millisecond to second time resolution and ensemble-scale statistics. We find that undercoordinated active sites promote CO2 reduction products directly after Cu2O to Cu activation, whereas less active planar surface sites evolve over time. These multiscale insights highlight the dynamic and intimate relationship between electrocatalyst structure, surface-adsorbed molecules, and catalytic performance, and our in situ X-ray scattering methodology serves as an additional tool to elucidate the factors that govern electrocatalyst (de)stabilization. The development of robust materials for electrochemical CO2 conversion requires identification of the activation and deactivation phase after prolonged operation. Here, the authors present a multiscale in situ X-ray scattering methodology to probe the life and death of copper oxide electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
healthy完成签到 ,获得积分10
1秒前
完美世界应助娇气的伟宸采纳,获得10
1秒前
1秒前
yar应助Solaris采纳,获得10
2秒前
王张李高应助shensir采纳,获得10
3秒前
uwe完成签到,获得积分10
3秒前
科研通AI2S应助Christine采纳,获得30
3秒前
lalala发布了新的文献求助10
4秒前
小白一号应助白河采纳,获得10
5秒前
小张完成签到 ,获得积分10
5秒前
艾斯完成签到 ,获得积分10
7秒前
LabRat发布了新的文献求助10
7秒前
7秒前
Shasa发布了新的文献求助50
7秒前
优美的明辉完成签到 ,获得积分20
9秒前
10秒前
毛豆应助端茶犯困仙君采纳,获得10
11秒前
11秒前
天天快乐应助Felix采纳,获得10
11秒前
13秒前
九九发布了新的文献求助10
14秒前
15秒前
田様应助kaixinjh1234采纳,获得10
15秒前
sansan完成签到 ,获得积分10
16秒前
孤山季礼完成签到,获得积分10
16秒前
脑洞疼应助夜谈十记采纳,获得10
17秒前
科研人完成签到,获得积分10
17秒前
18秒前
霸气的思柔完成签到,获得积分10
18秒前
所所应助X.-CHEN采纳,获得10
19秒前
20秒前
20秒前
秋海棠发布了新的文献求助10
20秒前
20秒前
Felix发布了新的文献求助10
24秒前
24秒前
Fearless完成签到,获得积分10
24秒前
26秒前
在水一方应助秋海棠采纳,获得10
27秒前
slim完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115