Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome

生物 表观遗传学 脱甲基酶 丁香假单胞菌 组蛋白 DNA甲基化 拟南芥 遗传学 组蛋白甲基化 拟南芥 微生物群 细胞生物学 突变体 基因 基因表达
作者
Suhui Lv,Yu Yang,Gang Yu,Peng Li,Shuai Zheng,Sunil Kumar Singh,Juan I. Vílchez,Richa Kaushal,Hailing Zi,Dian Yi,Yuhua Wang,Shaofan Luo,Xiao-Xuan Wu,Ziwei Zuo,Wei‐Chang Huang,Renyi Liu,Jiamu Du,Alberto P. Macho,Kai Tang,Huiming Zhang
出处
期刊:The ISME Journal [Springer Nature]
卷期号:16 (11): 2513-2524 被引量:16
标识
DOI:10.1038/s41396-022-01297-6
摘要

Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased. Transcriptome analyses of plants grown in soil and in sterile growth medium jointly disclosed salicylic acid (SA)-mediated autoimmunity and production of the defense metabolite camalexin in the ibm1 mutants. Analyses of genome-wide histone modifications and DNA methylation highlighted epigenetic modifications permissive for transcription at several important defense regulators. Consistently, ibm1 mutants showed increased resistance to the pathogen Pseudomonas syringae DC3000 with stronger immune responses. In addition, ibm1 showed substantially impaired plant growth promotion in response to beneficial bacteria; the impairment was partially mimicked by exogenous application of SA to wild-type plants, and by a null mutation of AGP19 that is important for cell expansion and that is repressed with DNA hypermethylation in ibm1. IBM1-dependent epigenetic regulation imposes strong and broad impacts on plant-microbe interactions and thereby shapes the assembly of root microbiota.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OMR123发布了新的文献求助10
2秒前
lwl完成签到,获得积分10
3秒前
852应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
8秒前
HuFan1201完成签到 ,获得积分10
10秒前
宋怡慷完成签到,获得积分10
10秒前
10秒前
好运张完成签到,获得积分20
12秒前
情怀应助shineshine采纳,获得10
12秒前
pipipi5200发布了新的文献求助10
14秒前
老姚完成签到,获得积分10
17秒前
天真的映波完成签到 ,获得积分10
17秒前
SC30发布了新的文献求助10
17秒前
dsdsd发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
CC完成签到 ,获得积分10
22秒前
Chloe955发布了新的文献求助10
25秒前
26秒前
舒心的依风完成签到,获得积分10
26秒前
大个应助好运张采纳,获得10
29秒前
29秒前
萍子完成签到,获得积分10
30秒前
执着访文完成签到,获得积分10
30秒前
NexusExplorer应助L112233采纳,获得10
32秒前
斯文败类应助SC30采纳,获得10
32秒前
33秒前
萍子发布了新的文献求助10
34秒前
dsdsd完成签到,获得积分10
35秒前
Steven发布了新的文献求助10
40秒前
能干的荆完成签到 ,获得积分10
42秒前
pipipi5200完成签到,获得积分10
42秒前
七彩光完成签到 ,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462