Establishment and validation of a multigene model to predict the risk of relapse in hormone receptor-positive early-stage Chinese breast cancer patients

乳腺癌 肿瘤科 比例危险模型 接收机工作特性 内科学 癌症 Lasso(编程语言) 激素受体 化疗 生物 医学 计算机科学 万维网
作者
Jiaxiang Liu,Shuangtao Zhao,Chenxuan Yang,Li Ma,Qixi Wu,Xiangzhi Meng,Bo Zheng,Changyuan Guo,Kexin Feng,Qingyao Shang,Jiaqi Liu,Jie Wang,Jingbo Zhang,Guangyu Shan,Bing Xu,Yueping Liu,Jianming Ying,Xin Wang,Xiang Wang
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
卷期号:136 (2): 184-193 被引量:1
标识
DOI:10.1097/cm9.0000000000002411
摘要

Abstract Background: Breast cancer patients who are positive for hormone receptor typically exhibit a favorable prognosis. It is controversial whether chemotherapy is necessary for them after surgery. Our study aimed to establish a multigene model to predict the relapse of hormone receptor-positive early-stage Chinese breast cancer after surgery and direct individualized application of chemotherapy in breast cancer patients after surgery. Methods: In this study, differentially expressed genes (DEGs) were identified between relapse and nonrelapse breast cancer groups based on RNA sequencing. Gene set enrichment analysis (GSEA) was performed to identify potential relapse-relevant pathways. CIBERSORT and Microenvironment Cell Populations-counter algorithms were used to analyze immune infiltration. The least absolute shrinkage and selection operator (LASSO) regression, log-rank tests, and multiple Cox regression were performed to identify prognostic signatures. A predictive model was developed and validated based on Kaplan–Meier analysis, receiver operating characteristic curve (ROC). Results: A total of 234 out of 487 patients were enrolled in this study, and 1588 DEGs were identified between the relapse and nonrelapse groups. GSEA results showed that immune-related pathways were enriched in the nonrelapse group, whereas cell cycle- and metabolism-relevant pathways were enriched in the relapse group. A predictive model was developed using three genes ( CKMT1B , SMR3B , and OR11M1P ) generated from the LASSO regression. The model stratified breast cancer patients into high- and low-risk subgroups with significantly different prognostic statuses, and our model was independent of other clinical factors. Time-dependent ROC showed high predictive performance of the model. Conclusions: A multigene model was established from RNA-sequencing data to direct risk classification and predict relapse of hormone receptor-positive breast cancer in Chinese patients. Utilization of the model could provide individualized evaluation of chemotherapy after surgery for breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助wen采纳,获得10
1秒前
4秒前
科研通AI2S应助HSA采纳,获得10
5秒前
5秒前
优秀不愁发布了新的文献求助10
6秒前
Ava应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
fanyueyue应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
fanyueyue应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
翁杰发布了新的文献求助10
10秒前
孙福禄应助liuzengzhang666采纳,获得10
10秒前
优秀不愁完成签到,获得积分10
12秒前
刘澳发布了新的文献求助10
12秒前
莫道桑榆完成签到,获得积分10
13秒前
立冬完成签到,获得积分10
16秒前
轩轩轩轩完成签到 ,获得积分10
16秒前
18秒前
wang佳俊发布了新的文献求助10
19秒前
土豆晴完成签到 ,获得积分10
21秒前
HJZ完成签到,获得积分10
24秒前
bz发布了新的文献求助10
24秒前
24秒前
刘澳完成签到,获得积分10
24秒前
光亮的千亦完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975