变硬
自愈水凝胶
刚度
材料科学
拉伤
复合材料
结构工程
计算机科学
工程类
生物
解剖
高分子化学
作者
Jingyu Xu,Jie Yin,Liang Gao
摘要
Living organisms are made of wet, soft tissues. However, there is only one candidate to simultaneously replicate the mechanical and composition features of load-bearing tissues, that is, strain-stiffening hydrogels. The conventional mechanical match design principle is mostly limited to stiffness matching. However, this strategy cannot sufficiently and necessarily lead to mechanical matching over the whole physiologic deformation period for tissues and damages the tissues over time. In this review, we aim to provide a comprehensive summary of the reported synthetic strain-stiffening hydrogels and particularly focus on the relationship between their structure and performance. Initially, we present a brief introduction on the significance of strain-stiffening hydrogels in mimicking the mechanics of tissues, and then we discuss the qualitative evaluation of the strain-stiffening behaviors to guide the design of materials towards mimicking soft tissue. After distinguishing the mechanical testing methods, we focus on the methods for the preparation of typical strain-stiffening hydrogels based on categories, such as network without strand entanglement, semiflexible network, and anisotropic networks. Subsequently, we discuss the structural evolution of strain-stiffening hydrogels. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring strain-stiffening hydrogels as tissue-mimics for addressing the societal needs at various frontiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI