Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainna完成签到,获得积分20
1秒前
guoduan发布了新的文献求助10
1秒前
wujiean发布了新的文献求助10
2秒前
卡奇Mikey完成签到,获得积分10
2秒前
FL完成签到 ,获得积分10
3秒前
cyyyyyyyyyy完成签到,获得积分10
3秒前
YM完成签到,获得积分10
3秒前
薯愿完成签到,获得积分10
4秒前
阿源发布了新的文献求助10
4秒前
5秒前
Chimmy完成签到,获得积分10
5秒前
顾矜应助花花采纳,获得10
5秒前
研友_8oBxrZ完成签到,获得积分10
7秒前
xunxun完成签到 ,获得积分10
7秒前
lonely完成签到,获得积分10
8秒前
PengyaoSu发布了新的文献求助10
9秒前
9秒前
爆米花应助cindy1226采纳,获得10
9秒前
10秒前
小雒雒完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
余姓懒完成签到,获得积分10
13秒前
13秒前
14秒前
chen发布了新的文献求助10
14秒前
lotus0311发布了新的文献求助30
16秒前
华仔应助丰富幻悲采纳,获得10
17秒前
云云然完成签到,获得积分10
17秒前
18秒前
所所应助wh雨采纳,获得10
19秒前
19秒前
19秒前
21秒前
ED应助是龙龙呀采纳,获得10
21秒前
22秒前
22秒前
愉快道之完成签到,获得积分10
22秒前
健壮丝袜发布了新的文献求助10
23秒前
jsinm-thyroid发布了新的文献求助10
23秒前
你怎么这么可爱啊完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089