Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪白十八发布了新的文献求助10
刚刚
1秒前
Lucas应助Patronus采纳,获得10
2秒前
linguo发布了新的文献求助50
2秒前
Mzb发布了新的文献求助10
4秒前
乐意你完成签到 ,获得积分10
5秒前
思如泉涌完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
科目三应助草莓月亮采纳,获得10
6秒前
飘逸楷瑞发布了新的文献求助10
7秒前
Young4399发布了新的文献求助10
7秒前
Owen应助reborn采纳,获得10
8秒前
9秒前
9秒前
豪子发布了新的文献求助10
9秒前
尉迟希望应助加菲丰丰采纳,获得10
11秒前
12秒前
SABUBU完成签到,获得积分10
12秒前
丫头发布了新的文献求助10
13秒前
大模型应助欧皇采纳,获得10
14秒前
15秒前
15秒前
情怀应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得30
16秒前
星辰大海应助科研通管家采纳,获得30
16秒前
浮游应助科研通管家采纳,获得20
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
阔达千萍应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
Jason完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353187
求助须知:如何正确求助?哪些是违规求助? 4485831
关于积分的说明 13964569
捐赠科研通 4386047
什么是DOI,文献DOI怎么找? 2409731
邀请新用户注册赠送积分活动 1402013
关于科研通互助平台的介绍 1375783