Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力考博完成签到,获得积分10
刚刚
万能图书馆应助bling采纳,获得10
1秒前
11发布了新的文献求助10
1秒前
Kopernik完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助牛牛采纳,获得30
1秒前
壮观砖家发布了新的文献求助20
1秒前
1秒前
好久不见发布了新的文献求助10
1秒前
优美的觅珍完成签到,获得积分20
2秒前
ATREE发布了新的文献求助10
2秒前
zhou123432完成签到,获得积分10
2秒前
爆米花应助czj采纳,获得10
3秒前
Alan发布了新的文献求助10
3秒前
矮小的凡阳完成签到 ,获得积分10
4秒前
温暖的花瓣完成签到,获得积分10
5秒前
EgbertW完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
zhou123432发布了新的文献求助10
5秒前
lyh完成签到,获得积分10
6秒前
科研通AI6应助优美的觅珍采纳,获得10
6秒前
满意麦片完成签到 ,获得积分10
7秒前
7秒前
小元完成签到,获得积分10
8秒前
8秒前
8秒前
善良的梦桃完成签到,获得积分10
8秒前
慕青应助朴素海亦采纳,获得10
9秒前
9秒前
9秒前
orixero应助欢呼的梦蕊采纳,获得10
9秒前
jisean完成签到 ,获得积分10
10秒前
10秒前
淡淡的妙芙完成签到,获得积分20
10秒前
10秒前
云fly完成签到,获得积分10
10秒前
xiaochenxiaochen完成签到,获得积分10
11秒前
所所应助XINWU采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162