Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的大白菜完成签到,获得积分10
刚刚
熊儒恒完成签到,获得积分10
刚刚
刚刚
白江虎发布了新的文献求助10
1秒前
笑点低的凉面完成签到,获得积分10
1秒前
Huzhu应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
多边形完成签到 ,获得积分10
2秒前
头哥应助科研通管家采纳,获得10
2秒前
2秒前
Rookie应助科研通管家采纳,获得10
2秒前
Wefaily应助科研通管家采纳,获得50
2秒前
2秒前
南宫应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zoe完成签到,获得积分10
3秒前
滴答滴完成签到 ,获得积分10
3秒前
dtcao完成签到,获得积分20
3秒前
笨笨的外套完成签到,获得积分10
4秒前
缓慢的王完成签到,获得积分10
5秒前
周一一完成签到,获得积分10
5秒前
Libra完成签到,获得积分10
5秒前
5秒前
一一完成签到,获得积分10
5秒前
6秒前
执着黑米完成签到 ,获得积分10
6秒前
6秒前
浪费完成签到 ,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883