Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyPang发布了新的文献求助10
刚刚
fairy完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
魂断红颜发布了新的文献求助10
1秒前
2秒前
2秒前
杨榆藤完成签到,获得积分10
3秒前
4秒前
xuanyu完成签到,获得积分10
5秒前
残剑月发布了新的文献求助10
5秒前
SINET完成签到,获得积分10
6秒前
Lucas应助桃源theshy采纳,获得10
6秒前
yyy完成签到,获得积分10
6秒前
爱的看到完成签到,获得积分10
7秒前
QiongYin_123完成签到 ,获得积分10
7秒前
研友_ZG4ml8发布了新的文献求助10
7秒前
xuanyu发布了新的文献求助10
7秒前
Wakakak完成签到,获得积分10
8秒前
8秒前
dh完成签到,获得积分0
9秒前
9秒前
9秒前
bbd发布了新的文献求助30
9秒前
柏小霜完成签到,获得积分10
10秒前
fjx完成签到,获得积分10
11秒前
猫咪完成签到,获得积分10
11秒前
贰壹完成签到,获得积分10
12秒前
柏小霜发布了新的文献求助10
13秒前
14秒前
完美世界应助乙醇采纳,获得10
14秒前
14秒前
111发布了新的文献求助10
15秒前
15秒前
xiaoru发布了新的文献求助10
15秒前
吴彦祖发布了新的文献求助10
15秒前
fjx发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605