Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洛尚发布了新的文献求助10
1秒前
1秒前
1秒前
1111完成签到,获得积分20
1秒前
2秒前
hulahula完成签到,获得积分20
2秒前
科研通AI6应助摇光采纳,获得10
2秒前
3秒前
wangdao完成签到,获得积分10
3秒前
科研通AI6应助机智的明雪采纳,获得10
3秒前
闪闪的熠彤完成签到,获得积分10
3秒前
4秒前
遇上就这样吧应助zxy采纳,获得20
5秒前
5秒前
hulahula发布了新的文献求助10
5秒前
领导范儿应助qiny采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
追梦人完成签到 ,获得积分10
7秒前
五花肉完成签到,获得积分10
7秒前
7秒前
高贵从蕾完成签到,获得积分20
8秒前
Richard发布了新的文献求助10
8秒前
细心蚂蚁发布了新的文献求助10
8秒前
完美世界应助洛尚采纳,获得10
8秒前
乐乐应助Sunny采纳,获得10
8秒前
文静的行恶完成签到,获得积分10
9秒前
枯叶灬风发布了新的文献求助10
10秒前
10秒前
拾一完成签到,获得积分10
10秒前
霸气鞯发布了新的文献求助10
11秒前
VAPORX发布了新的文献求助10
11秒前
善学以致用应助尊敬的惠采纳,获得10
11秒前
XIAOMEIMA完成签到,获得积分10
11秒前
自信不言发布了新的文献求助10
11秒前
谢慧蕴完成签到,获得积分10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443003
求助须知:如何正确求助?哪些是违规求助? 4552969
关于积分的说明 14240171
捐赠科研通 4474475
什么是DOI,文献DOI怎么找? 2452007
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418675