已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
2秒前
ll完成签到 ,获得积分10
3秒前
4秒前
碧蓝靳完成签到,获得积分10
4秒前
4秒前
吉他独奏手完成签到,获得积分10
6秒前
归尘发布了新的文献求助10
6秒前
浮游应助RRReol采纳,获得10
7秒前
贤惠的爆米花完成签到 ,获得积分10
9秒前
kingsbro-xu发布了新的文献求助10
10秒前
听风随影完成签到 ,获得积分10
11秒前
11秒前
1751587229完成签到,获得积分10
17秒前
行星完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
22秒前
甜蜜的大象完成签到 ,获得积分10
22秒前
22秒前
竹马你是完成签到,获得积分10
24秒前
25秒前
郭大侠完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
29秒前
茗泠完成签到,获得积分10
29秒前
比邻星发布了新的文献求助10
29秒前
脑洞疼应助琳666采纳,获得10
30秒前
隐形的西牛完成签到,获得积分10
30秒前
30秒前
竹马你是发布了新的文献求助10
31秒前
贤惠的爆米花关注了科研通微信公众号
32秒前
茗泠发布了新的文献求助10
32秒前
华仔应助香菜芋头采纳,获得10
33秒前
liz_完成签到,获得积分10
33秒前
情怀应助韦伯采纳,获得10
33秒前
霸气灵松发布了新的文献求助10
33秒前
浮游应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462845
求助须知:如何正确求助?哪些是违规求助? 4567705
关于积分的说明 14311001
捐赠科研通 4493477
什么是DOI,文献DOI怎么找? 2461675
邀请新用户注册赠送积分活动 1450801
关于科研通互助平台的介绍 1425919