Hyperbolic Temporal Network Embedding

计算机科学 嵌入 理论计算机科学 双曲线树 双曲流形 人工智能 数学 双曲函数 数学分析
作者
Meng‐Lin Yang,Min Zhou,Hui Xiong,Irwin King
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11489-11502 被引量:21
标识
DOI:10.1109/tkde.2022.3232398
摘要

Temporal networks arise in various real-world scenarios, including social networks, user-item networks, traffic networks, financial transaction networks, etc. Modeling the dynamics of temporal networks is of importance as it describes how the networks evolve, which helps to understand and predict the behavior of the systems. There has been a lot of research on temporal network representation learning so far. Nonetheless, most of them are based on euclidean geometry, which fails to encode the underlying hierarchical layout or scale-free property of the real-world temporal network. Encouragingly, hyperbolic geometry excels in preserving both node similarity and network hierarchies. In the preliminary work, we proposed a hyperbolic temporal graph network (HTGN) on the Poincaré ball model, taking advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. HTGN moves the temporal network embedding into hyperbolic space and employs the hyperbolic graph neural network and hyperbolic gated recurrent neural network to capture spatial and temporal dynamics, respectively. In addition, two modules were further put forward to advance the performance: (1) hyperbolic temporal contextual self-attention to watch historical states and (2) hyperbolic temporal consistency to enforce the embeddings changing gradually. In this work, we further design a lightweight and efficient hyperbolic graph convolutional module that enables HTGN to scale to large-size graphs easily and flexibly handle datasets with different densities. Moreover, we investigate the hyperbolic temporal network embedding in the Lorentz model of hyperbolic geometry with regard to its numerical stability and optimization advantages. Extensive experiments demonstrate the effectiveness of the proposals as they consistently outperform the competing baselines on small-, medium-, and large-scale datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走人生发布了新的文献求助30
1秒前
乐乐应助灵珠学医采纳,获得10
1秒前
个性的荆发布了新的文献求助10
3秒前
科研通AI6应助郑木木采纳,获得10
4秒前
5秒前
科研通AI6应助寒冷的箴采纳,获得10
5秒前
6秒前
7秒前
YU完成签到,获得积分10
8秒前
NGC发布了新的文献求助10
8秒前
端庄的妙菱完成签到,获得积分10
8秒前
8秒前
10秒前
香菜芋头完成签到,获得积分10
10秒前
完美世界应助eijgnij采纳,获得10
10秒前
WB发布了新的文献求助10
11秒前
行走人生完成签到,获得积分10
11秒前
思源应助jagger采纳,获得10
12秒前
13秒前
YU发布了新的文献求助10
13秒前
xiaohui发布了新的文献求助10
13秒前
夹心发布了新的文献求助10
13秒前
刻苦的长颈鹿完成签到,获得积分10
14秒前
体贴雪碧发布了新的文献求助10
14秒前
一只猪完成签到,获得积分10
14秒前
15秒前
111完成签到,获得积分20
15秒前
Ava应助WB采纳,获得10
17秒前
18秒前
18秒前
魔幻诗兰完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
stellc完成签到,获得积分10
19秒前
19秒前
祝你开心发布了新的文献求助10
20秒前
追寻宛海完成签到,获得积分10
21秒前
KKK发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901