YOLO-Former: Marrying YOLO and Transformer for Foreign Object Detection

目标检测 计算机科学 变压器 人工智能 计算机视觉 工程类 模式识别(心理学) 电气工程 电压
作者
Yuan Dai,Weiming Liu,Heng Wang,Wei Xie,Kejun Long
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:39
标识
DOI:10.1109/tim.2022.3219468
摘要

The automatic detection of foreign objects between platform screen doors (PSDs) and metro train doors significantly affects personnel and property safety and maintains the train's normal operation. However, some existing works only determine the presence of foreign objects but cannot indicate their categories. Besides, although deep-learning-based object detection algorithms can indicate the presence and categories of foreign objects, most of them only harness the information in region proposals, ignoring global contextual information. Furthermore, their performance comes at the considerable cost of computational complexity, and leading cannot be well deployed in the metro environment. To address these issues and better implement foreign object detection (FOD), we present You Only Look Once-Transformer (YOLO-Former), a simple but efficient model. YOLO-Former is accomplished based on YOLOv5 through the following procedure. First, the vision transformer (ViT) is introduced for dynamic attention and global modeling, thereby solving the problem that the original YOLOv5 only utilizes information in region proposals and has insufficient ability to capture global information. Second, the convolutional block attention module (CBAM) and Stem module are used to improve feature expression ability further and reduce floating point operations (FLOPs). Finally, we design various variants with different widths and depths to meet every need. Experiments on the foreign object detection dataset (FODD) and PASCAL VOC dataset demonstrate that YOLO-Former-x consistently outperforms other state-of-the-arts with significant margins (0.5 to 11.3 mean average precision, mAP, on FODD and 0.6 to 13.6 on PASCAL VOC dataset). Last but not least, YOLO-Former-x maintains real-time processing speed (27.32 and 28.17 frame per second, FPS, on TITAN Xp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助anna采纳,获得10
刚刚
clairr完成签到,获得积分10
1秒前
2秒前
美满的高丽完成签到 ,获得积分10
3秒前
七面东风发布了新的文献求助10
4秒前
王0535完成签到,获得积分10
5秒前
5秒前
7秒前
bkagyin应助小甜桶采纳,获得10
7秒前
大个应助豆豆采纳,获得10
8秒前
8秒前
9秒前
9秒前
luuer完成签到,获得积分10
9秒前
打打应助丁丁历险记采纳,获得10
10秒前
昵称发布了新的文献求助10
11秒前
李明涵发布了新的文献求助30
11秒前
qyang发布了新的文献求助10
12秒前
12秒前
研友_P85KMn完成签到,获得积分10
13秒前
一介书生发布了新的文献求助10
14秒前
斯文败类应助猴哥采纳,获得10
15秒前
16秒前
ZhangL发布了新的文献求助10
17秒前
BHI完成签到 ,获得积分10
18秒前
愤怒的念烟完成签到,获得积分10
19秒前
彭于晏应助欣慰乐松采纳,获得10
20秒前
善良的火完成签到 ,获得积分10
23秒前
Jasper应助无情向薇采纳,获得10
23秒前
温柔的语柔完成签到,获得积分10
23秒前
杨昕发布了新的文献求助30
24秒前
小甜桶发布了新的文献求助10
24秒前
大模型应助冷傲凝琴采纳,获得10
25秒前
西西完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
minever白完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619