YOLO-Former: Marrying YOLO and Transformer for Foreign Object Detection

失败 帕斯卡(单位) 目标检测 计算机科学 变压器 人工智能 计算机视觉 实时计算 工程类 模式识别(心理学) 电气工程 并行计算 操作系统 电压 程序设计语言
作者
Yuan Dai,Weiming Liu,Heng Wang,Wei Xie,Kejun Long
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:26
标识
DOI:10.1109/tim.2022.3219468
摘要

The automatic detection of foreign objects between platform screen doors (PSDs) and metro train doors significantly affects personnel and property safety and maintains the train’s normal operation. However, some existing works only determine the presence of foreign objects but cannot indicate their categories. Besides, although deep-learning-based object detection algorithms can indicate the presence and categories of foreign objects, most of them only harness the information in region proposals, ignoring global contextual information. Furthermore, their performance comes at the considerable cost of computational complexity, and leading cannot be well deployed in the metro environment. To address these issues and better implement foreign object detection (FOD), we present You Only Look Once-Transformer (YOLO-Former), a simple but efficient model. YOLO-Former is accomplished based on YOLOv5 through the following procedure. First, the vision transformer (ViT) is introduced for dynamic attention and global modeling, thereby solving the problem that the original YOLOv5 only utilizes information in region proposals and has insufficient ability to capture global information. Second, the convolutional block attention module (CBAM) and Stem module are used to improve feature expression ability further and reduce floating point operations (FLOPs). Finally, we design various variants with different widths and depths to meet every need. Experiments on the foreign object detection dataset (FODD) and PASCAL VOC dataset demonstrate that YOLO-Former-x consistently outperforms other state-of-the-arts with significant margins (0.5 to 11.3 mean average precision, mAP, on FODD and 0.6 to 13.6 on PASCAL VOC dataset). Last but not least, YOLO-Former-x maintains real-time processing speed (27.32 and 28.17 frame per second, FPS, on TITAN Xp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晨完成签到 ,获得积分10
1秒前
Flyzhang完成签到,获得积分10
1秒前
辛勤的灵薇完成签到,获得积分10
2秒前
不滞于物完成签到,获得积分20
2秒前
投石问路完成签到,获得积分10
2秒前
11号迪西馅饼完成签到,获得积分10
2秒前
learnerZ_2023完成签到,获得积分10
3秒前
ZhangYi完成签到,获得积分10
3秒前
3秒前
3秒前
夏雨微凉完成签到,获得积分10
3秒前
Waaly完成签到,获得积分10
4秒前
gxyyyy完成签到,获得积分10
4秒前
juwish完成签到,获得积分10
5秒前
刘敏完成签到 ,获得积分10
6秒前
7秒前
充电宝应助brick2024采纳,获得10
7秒前
pengnanhao完成签到,获得积分10
9秒前
喃逸发布了新的文献求助10
9秒前
9秒前
凡帝完成签到,获得积分10
9秒前
欣喜雪晴完成签到 ,获得积分10
10秒前
善学以致用应助自然芹采纳,获得10
11秒前
yuancw完成签到 ,获得积分10
12秒前
tanghong完成签到,获得积分10
12秒前
顺利白竹完成签到 ,获得积分10
13秒前
WX完成签到,获得积分10
13秒前
futianyu完成签到 ,获得积分10
13秒前
材料打工人完成签到,获得积分10
14秒前
冰刀完成签到,获得积分10
14秒前
超级玛丽完成签到 ,获得积分10
14秒前
明日星辰完成签到,获得积分10
15秒前
15秒前
15秒前
积极的中蓝完成签到 ,获得积分10
15秒前
子非鱼完成签到,获得积分10
15秒前
16秒前
拼搏诗翠完成签到 ,获得积分10
16秒前
jason完成签到,获得积分10
16秒前
babyhead完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012