癌症研究
小RNA
基因沉默
细胞生长
上皮-间质转换
波形蛋白
细胞周期蛋白D1
竞争性内源性RNA
下调和上调
生物
转移
MAPK/ERK通路
细胞
信号转导
长非编码RNA
细胞生物学
细胞周期
癌症
免疫学
基因
免疫组织化学
生物化学
遗传学
作者
Uttam Sharma,Manjit Kaur Rana,Kulvir Singh,Aklank Jain
标识
DOI:10.1016/j.bcp.2022.115372
摘要
Long non-coding RNAs have been demonstrated to promote proliferation and metastasis via regulating the miRNA/mRNA regulatory axis in various malignancies. Based on our preliminary study, we investigated the mechanism of LINC00324 through miR-493-5p/MAPK1 in esophageal squamous cell carcinoma (ESCC) pathogenesis. Herein, we confirmed that LINC00324 is significantly upregulated in ESCC primary cells and esophageal squamous cell carcinoma cell line KYSE-70. Silencing of LINC00324 modulates cell proliferation markers, p21, p27, c-Myc, and Cyclin D1 and epithelial-to-mesenchymal transition markers, slug, snail, ZEB1, vimentin, ZO-1, and E-cadherin protein expression in ESCC. Through bioinformatics and dual luciferase reporter assays, we identified miR-493-5p as the direct target molecule of LINC00324. We further revealed that LINC00324 negatively regulates miR-493-5p expression in ESCC. Moreover, our multiple gain-and loss-of-functional experiments proved that a combination of miR-493-5p and LINC00324 significantly rescued ESCC cell proliferation and metastatic phenotypes. Mechanistically, LINC00324 promotes ESCC pathogenesis by acting as a competing endogenous RNA and sponges miR-493-5p activity thereby activating MAPK1 during ESCC progression. We believe that targeting LINC00324 /miR-493-5p/MAPK1 axis may provide new therapeutic avenues for ESCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI