Predicting postoperative delirium after hip arthroplasty for elderly patients using machine learning

医学 谵妄 逻辑回归 围手术期 关节置换术 曲线下面积 机器学习 物理疗法 内科学 外科 重症监护医学 计算机科学
作者
Daiyu Chen,Weijia Wang,Siqi Wang,Minghe Tan,Song Su,Jiali Wu,Jun Yang,Qingshu Li,Yong Tang,Jun Cao
出处
期刊:Aging Clinical and Experimental Research [Springer Nature]
卷期号:35 (6): 1241-1251 被引量:4
标识
DOI:10.1007/s40520-023-02399-7
摘要

Postoperative delirium (POD) is a common and severe complication in elderly hip-arthroplasty patients.This study aims to develop and validate a machine learning (ML) model that determines essential features related to POD and predicts POD for elderly hip-arthroplasty patients.The electronic record data of elderly patients who received hip-arthroplasty surgery between January 2017 and April 2021 were enrolled as the dataset. The Confusion Assessment Method (CAM) was administered to the patients during their perioperative period. The feature section method was employed as a filter to determine leading features. The classical machine learning algorithms were trained in cross-validation processing, and the model with the best performance was built in predicting the POD. Metrics of the area under the curve (AUC), accuracy (ACC), sensitivity, specificity, and F1-score were calculated to evaluate the predictive performance.476 Arthroplasty elderly patients with general anesthesia were included in this study, and the final model combined feature selection method mutual information (MI) and linear binary classifier using logistic regression (LR) achieved an encouraging performance (AUC = 0.94, ACC = 0.88, sensitivity = 0.85, specificity = 0.90, F1-score = 0.87) on a balanced test dataset.The model could predict POD with satisfying accuracy and reveal important features of suffering POD such as age, Cystatin C, GFR, CHE, CRP, LDH, monocyte count, history of mental illness or psychotropic drug use and intraoperative blood loss. Proper preoperative interventions for these factors could reduce the incidence of POD among elderly patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瑶瑶完成签到,获得积分10
2秒前
3秒前
JamesPei应助PGR采纳,获得10
4秒前
wch666完成签到,获得积分10
6秒前
monster发布了新的文献求助10
8秒前
10秒前
10秒前
爱你的心满满完成签到 ,获得积分10
11秒前
闪电发布了新的文献求助10
12秒前
14秒前
14秒前
去看海嘛应助迷路的清涟采纳,获得10
14秒前
yang完成签到,获得积分10
14秒前
utgu完成签到,获得积分10
15秒前
669完成签到,获得积分10
15秒前
小二郎应助monster采纳,获得10
15秒前
左眼天堂完成签到,获得积分10
17秒前
烟花应助小郭采纳,获得10
18秒前
隐形曼青应助manman采纳,获得10
19秒前
relexer应助meredith采纳,获得10
21秒前
微笑诗蕊完成签到 ,获得积分10
22秒前
24秒前
30秒前
积极傥发布了新的文献求助10
34秒前
Duke完成签到,获得积分10
34秒前
小乌龟完成签到 ,获得积分10
34秒前
38秒前
王提发布了新的文献求助10
38秒前
123完成签到,获得积分10
39秒前
39秒前
NexusExplorer应助标致的以山采纳,获得10
43秒前
ajing完成签到,获得积分10
43秒前
43秒前
眼睛大如天完成签到,获得积分10
44秒前
思源应助bukeshuo采纳,获得10
44秒前
可爱的函函应助遥感小虫采纳,获得10
45秒前
45秒前
46秒前
hxb发布了新的文献求助10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187