Study on pipeline corrosion monitoring based on piezoelectric active time reversal method

腐蚀 信号(编程语言) 管道(软件) 管道运输 腐蚀监测 材料科学 声学 时域 超声波传感器 重复性 能量(信号处理) 工程类 复合材料 计算机科学 机械工程 物理 化学 色谱法 量子力学 计算机视觉 程序设计语言
作者
Jing Wang,Xinyi Zhang,Tao Wang,Guangtao Lu,Yi Peng
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (5): 054003-054003 被引量:2
标识
DOI:10.1088/1361-665x/accc1a
摘要

Abstract Pipeline corrosion, especially inner wall corrosion, will cause serious safety accidents. It is important to monitor the corrosion inside the pipeline to reduce the potential risk. Considering the thickness of the pipe wall will become thinner due to the corrosion which will cause the attenuation of the propagated ultrasonic signal energy. Based on this, a novel method for real-time monitoring of pipeline inner wall corrosion using piezoelectric active sensing technology combined with time reversal method is proposed. Two PZT patches are bonded on the outer surface of the pipe as an actuator and a sensor to generate and receive ultrasonic signals propagating in the pipeline wall, respectively. With the time reversal method, the received response signal is reversed in the time domain and then re-emitted as an excitation signal again. Then the time reversal focused signal which represents the signal energy is obtained. By analyzing the received signal energy, that is the focused signal peak, the corrosion state in the inner wall of pipeline can be judged. Experiments are performed to verify the proposed method. In the experiments, the electrochemical corrosion is used to generate the occurrence and evolution of erosion inside the pipeline. Eight different corrosion states of three sample pipelines were studied at different corrosion time. The experimental results show that the peak amplitude of the focused signal decreases with the increase of corrosion time with good repeatability. The method is feasible in pipeline corrosion monitoring, especially in monitoring of the early pipeline corrosion, which has a good application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫板凳完成签到 ,获得积分10
刚刚
凡仔完成签到,获得积分10
刚刚
Haicheng完成签到,获得积分10
刚刚
刚刚
Grayball应助平云采纳,获得10
1秒前
子车谷波完成签到,获得积分10
2秒前
2秒前
苏安泠完成签到 ,获得积分10
3秒前
3秒前
英勇的思天完成签到 ,获得积分10
4秒前
zzqx完成签到,获得积分10
6秒前
起司嗯完成签到,获得积分10
6秒前
开放鸵鸟完成签到,获得积分10
6秒前
徐徐发布了新的文献求助10
6秒前
ZZZ发布了新的文献求助10
7秒前
懵懂的子骞完成签到 ,获得积分10
8秒前
mammoth发布了新的文献求助40
8秒前
8秒前
英俊的铭应助Chang采纳,获得10
9秒前
9秒前
9秒前
kk子完成签到,获得积分10
10秒前
夏橪发布了新的文献求助10
10秒前
JamesPei应助lunan采纳,获得10
11秒前
传奇3应助qing采纳,获得10
11秒前
卫尔摩斯完成签到,获得积分10
12秒前
12秒前
12秒前
沉默牛排发布了新的文献求助10
12秒前
科研通AI5应助独特微笑采纳,获得10
12秒前
13秒前
13秒前
碧玉墨绿完成签到,获得积分10
13秒前
xiaoma完成签到,获得积分10
13秒前
14秒前
潇洒的擎苍完成签到,获得积分10
14秒前
刘晓纳发布了新的文献求助10
14秒前
晴子发布了新的文献求助10
14秒前
洛鸢发布了新的文献求助10
15秒前
立马毕业完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762