Boosting battery state of health estimation based on self-supervised learning

计算机科学 稳健性(进化) Boosting(机器学习) 预处理器 人工智能 机器学习 监督学习 数据预处理 编码器 健康状况 数据挖掘 电池(电) 人工神经网络 功率(物理) 物理 量子力学 生物化学 化学 基因 操作系统
作者
Yunhong Che,Yusheng Zheng,Xin Sui,Remus Teodorescu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:84: 335-346 被引量:15
标识
DOI:10.1016/j.jechem.2023.05.034
摘要

State of health (SoH) estimation plays a key role in smart battery health prognostic and management. However, poor generalization, lack of labeled data, and unused measurements during aging are still the major challenges to accurate SoH estimation. Toward this end, this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation. Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells, the proposed method achieves accurate and robust estimations using limited labeled data. A filter-based data preprocessing technique, which enables the extraction of partial capacity-voltage curves under dynamic charging profiles, is applied at first. Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder. The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data, which boosts the performance of the estimation framework. The proposed method has been validated under different battery chemistries, formats, operating conditions, and ambient. The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles, with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%, and robustness increases with aging. Comparisons with other supervised machine learning methods demonstrate the superiority of the proposed method. This simple and data-efficient estimation framework is promising in real-world applications and under a variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助dwj采纳,获得10
刚刚
深情安青应助一YI采纳,获得10
1秒前
科研废物发布了新的文献求助10
2秒前
鲸落发布了新的文献求助10
3秒前
5秒前
秦之之完成签到,获得积分20
5秒前
慕容浩然完成签到,获得积分10
5秒前
5秒前
SYLH应助nns采纳,获得10
8秒前
TT发布了新的文献求助20
9秒前
SYLH应助Chen272采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
deng203发布了新的文献求助10
11秒前
12秒前
14秒前
城南烤地瓜完成签到 ,获得积分10
14秒前
14秒前
恩物来说发布了新的文献求助10
14秒前
15秒前
HHH完成签到,获得积分10
15秒前
15秒前
15秒前
Owen应助细腻的谷秋采纳,获得10
15秒前
Kwin发布了新的文献求助10
16秒前
18秒前
dwj发布了新的文献求助10
19秒前
神勇中道发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732805
求助须知:如何正确求助?哪些是违规求助? 3276926
关于积分的说明 9999703
捐赠科研通 2992607
什么是DOI,文献DOI怎么找? 1642376
邀请新用户注册赠送积分活动 780360
科研通“疑难数据库(出版商)”最低求助积分说明 748728